ترغب بنشر مسار تعليمي؟ اضغط هنا

High Order Residual Distribution Conservative Finite Difference HWENO Scheme for Steady State Problems

166   0   0.0 ( 0 )
 نشر من قبل Jianfang Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop a high order residual distribution (RD) method for solving steady state conservation laws in a novel Hermite weighted essentially non-oscillatory (HWENO) framework recently developed in [23]. In particular, we design a high order HWENO reconstructions for the integrals of source term and fluxes based on the point values of the solution and its spatial derivatives, and the principles of residual distribution schemes are adapted to obtain steady state solutions. The proposed novel HWENO framework enjoys two advantages. First, compared with the traditional HWENO framework, the proposed methods do not need to introduce additional auxiliary equations to update the derivatives of the unknown function, and compute them from the current value and the old spatial derivatives. This approach saves the computational storage and CPU time, which greatly improves the computational efficiency of the traditional HWENO framework. Second, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller at the same grid. Thus, it is also a compact scheme when we design the higher order accuracy, compared with that in [11] Chou and Shu proposed. Extensive numerical experiments for one and two-dimensional scalar and systems problems confirm the high order accuracy and good quality of our scheme.

قيم البحث

اقرأ أيضاً

A mass-conservative Lagrange--Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of $L^2$-theory. The introduced scheme maintains the advanta ges of the Lagrange--Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-conservation property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. For the first time step, the mass-conservative scheme of first order in time by Rui and Tabata in 2010 is employed, which is efficient and does not cause any loss of convergence order in the $ell^infty(L^2)$- and $ell^2(H^1_0)$-norms. For the time increment $Delta t$, the mesh size $h$ and a conforming finite element space of polynomial degree $k$, the convergence order is of $O(Delta t^2 + h^k)$ in the $ell^infty(L^2)cap ell^2(H^1_0)$-norm and of $O(Delta t^2 + h^{k+1})$ in the $ell^infty(L^2)$-norm if the duality argument can be employed. Error estimates of $O(Delta t^{3/2}+h^k)$ in discre
Discrete approximations to the equation begin{equation*} L_{cont}u = u^{(4)} + D(x) u^{(3)} + A(x) u^{(2)} + (A(x)+H(x)) u^{(1)} + B(x) u = f, ; xin[0,1] end{equation*} are considered. This is an extension of the Sturm-Liouville case $D(x)equiv H(x )equiv 0$ [ M. Ben-Artzi, J.-P. Croisille, D. Fishelov and R. Katzir, Discrete fourth-order Sturm-Liouville problems, IMA J. Numer. Anal. {bf 38} (2018), 1485-1522. doi: 10.1093/imanum/drx038] to the non-self-adjoint setting. The natural boundary conditions in the Sturm-Liouville case are the values of the function and its derivative. The inclusion of a third-order discrete derivative entails a revision of the underlying discrete functional calculus. This revision forces evaluations of accurate discrete approximations to the boundary values of the second, third and fourth order derivatives. The resulting functional calculus provides the discrete analogs of the fundamental Sobolev properties--compactness and coercivity. It allows to obtain a general convergence theorem of the discrete approximations to the exact solution. Some representative numerical examples are presented.
This paper develops the high-order accurate entropy stable (ES) finite difference schemes for the shallow water magnetohydrodynamic (SWMHD) equations.They are built on the numerical approximation of the modified SWMHD equations with the Janhunen sour ce term. First, the second-order accurate well-balanced semi-discrete entropy conservative (EC) schemes are constructed, satisfying the entropy identity for the given convex entropy function and preserving the steady states of the lake at rest (with zero magnetic field). The key is to match both discretizations for the fluxes and the non-flat river bed bottom and Janhunen source terms, and to find the affordable EC fluxes of the second-order EC schemes. Next, by using the second-order EC schemes as building block, high-order accurate well-balanced semi-discrete EC schemes are proposed. Then, the high-order accurate well-balanced semi-discrete ES schemes %satisfying the entropy inequality are derived by adding a suitable dissipation term to the EC scheme with the WENO reconstruction of the scaled entropy variables in order to suppress the numerical oscillations of the EC schemes. After that, the semi-discrete schemes are integrated in time by using the high-order strong stability preserving explicit Runge-Kutta schemes to obtain the fully-discrete high-order well-balanced schemes. The ES property of the Lax-Friedrichs flux is also proved and then the positivity-preserving ES schemes are studied by using the positivity-preserving flux limiter. Finally, extensive numerical tests are conducted to validate the accuracy, the well-balanced, ES and positivity-preserving properties, and the ability to capture discontinuities of our schemes.
In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with t he continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.
145 - Zhiming Chen , Ke Li , 2020
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا