ﻻ يوجد ملخص باللغة العربية
Weakly-supervised anomaly detection aims at learning an anomaly detector from a limited amount of labeled data and abundant unlabeled data. Recent works build deep neural networks for anomaly detection by discriminatively mapping the normal samples and abnormal samples to different regions in the feature space or fitting different distributions. However, due to the limited number of annotated anomaly samples, directly training networks with the discriminative loss may not be sufficient. To overcome this issue, this paper proposes a novel strategy to transform the input data into a more meaningful representation that could be used for anomaly detection. Specifically, we leverage an autoencoder to encode the input data and utilize three factors, hidden representation, reconstruction residual vector, and reconstruction error, as the new representation for the input data. This representation amounts to encode a test sample with its projection on the training data manifold, its direction to its projection and its distance to its projection. In addition to this encoding, we also propose a novel network architecture to seamlessly incorporate those three factors. From our extensive experiments, the benefits of the proposed strategy are clearly demonstrated by its superior performance over the competitive methods.
Anomaly detection with weakly supervised video-level labels is typically formulated as a multiple instance learning (MIL) problem, in which we aim to identify snippets containing abnormal events, with each video represented as a bag of video snippets
Unsupervised learning can leverage large-scale data sources without the need for annotations. In this context, deep learning-based auto encoders have shown great potential in detecting anomalies in medical images. However, state-of-the-art anomaly sc
Anomaly activities such as robbery, explosion, accidents, etc. need immediate actions for preventing loss of human life and property in real world surveillance systems. Although the recent automation in surveillance systems are capable of detecting t
Network attacks have been very prevalent as their rate is growing tremendously. Both organization and individuals are now concerned about their confidentiality, integrity and availability of their critical information which are often impacted by netw
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify