ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Anomaly Detection in Images using Adversarial Autoencoders

131   0   0.0 ( 0 )
 نشر من قبل Laura Beggel
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify those images as anomalies, where the reconstruction error exceeds some threshold. Here we analyze a fundamental problem of this approach when the training set is contaminated with a small fraction of outliers. We find that continued training of autoencoders inevitably reduces the reconstruction error of outliers, and hence degrades the anomaly detection performance. In order to counteract this effect, an adversarial autoencoder architecture is adapted, which imposes a prior distribution on the latent representation, typically placing anomalies into low likelihood-regions. Utilizing the likelihood model, potential anomalies can be identified and rejected already during training, which results in an anomaly detector that is significantly more robust to the presence of outliers during training.



قيم البحث

اقرأ أيضاً

120 - Chieh-Hsin Lai , Dongmian Zou , 2019
We propose a neural network for unsupervised anomaly detection with a novel robust subspace recovery layer (RSR layer). This layer seeks to extract the underlying subspace from a latent representation of the given data and removes outliers that lie a way from this subspace. It is used within an autoencoder. The encoder maps the data into a latent space, from which the RSR layer extracts the subspace. The decoder then smoothly maps back the underlying subspace to a manifold close to the original inliers. Inliers and outliers are distinguished according to the distances between the original and mapped positions (small for inliers and large for outliers). Extensive numerical experiments with both image and document datasets demonstrate state-of-the-art precision and recall.
Deep generative architectures provide a way to model not only images but also complex, 3-dimensional objects, such as point clouds. In this work, we present a novel method to obtain meaningful representations of 3D shapes that can be used for challen ging tasks including 3D points generation, reconstruction, compression, and clustering. Contrary to existing methods for 3D point cloud generation that train separate decoupled models for representation learning and generation, our approach is the first end-to-end solution that allows to simultaneously learn a latent space of representation and generate 3D shape out of it. Moreover, our model is capable of learning meaningful compact binary descriptors with adversarial training conducted on a latent space. To achieve this goal, we extend a deep Adversarial Autoencoder model (AAE) to accept 3D input and create 3D output. Thanks to our end-to-end training regime, the resulting method called 3D Adversarial Autoencoder (3dAAE) obtains either binary or continuous latent space that covers a much wider portion of training data distribution. Finally, our quantitative evaluation shows that 3dAAE provides state-of-the-art results for 3D points clustering and 3D object retrieval.
We present a mechanism for detecting adversarial examples based on data representations taken from the hidden layers of the target network. For this purpose, we train individual autoencoders at intermediate layers of the target network. This allows u s to describe the manifold of true data and, in consequence, decide whether a given example has the same characteristics as true data. It also gives us insight into the behavior of adversarial examples and their flow through the layers of a deep neural network. Experimental results show that our method outperforms the state of the art in supervised and unsupervised settings.
CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can in duce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images, which are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we design and apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarial training, data pre-processing and manual tagging.
We propose an approach to distinguish between correct and incorrect image classifications. Our approach can detect misclassifications which either occur $it{unintentionally}$ (natural errors), or due to $it{intentional~adversarial~attacks}$ (adversar ial errors), both in a single $it{unified~framework}$. Our approach is based on the observation that correctly classified images tend to exhibit robust and consistent classifications under certain image transformations (e.g., horizontal flip, small image translation, etc.). In contrast, incorrectly classified images (whether due to adversarial errors or natural errors) tend to exhibit large variations in classification results under such transformations. Our approach does not require any modifications or retraining of the classifier, hence can be applied to any pre-trained classifier. We further use state of the art targeted adversarial attacks to demonstrate that even when the adversary has full knowledge of our method, the adversarial distortion needed for bypassing our detector is $it{no~longer~imperceptible~to~the~human~eye}$. Our approach obtains state-of-the-art results compared to previous adversarial detection methods, surpassing them by a large margin.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا