ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological phases of the dimerized Hofstadter butterfly

121   0   0.0 ( 0 )
 نشر من قبل Zheng-Wei Zuo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the topological phases of the dimerized square lattice in the presence of an external magnetic field. The dimerization pattern in the lattices hopping amplitudes can induce a series of bulk energy gap openings in the Hofstadter spectrum at certain fractional fillings, giving rise to various topological phases. In particular, we show that at $frac{1}{2}$-filling the topological quadrupole insulator phase with a quadrupole moment quantized to $frac{e}{2}$ and associated corner-localized mid-gap states exists in certain parameter regime for all magnetic fluxes. At $frac{1}{4}$ filling, the system can host obstructed atomic limit phases or Chern insulator phases. For those configurations gapped at fillings below $frac{1}{4}$, the system is in Chern insulator phases of various non-vanishing Chern numbers. Across the phase diagram, both bulk-obstructed and boundary-obstructed topological phase transitions exist in this model.



قيم البحث

اقرأ أيضاً

Motivated by recent experimental realizations of topological edge states in Su-Schrieffer-Heeger (SSH) chains, we theoretically study a ladder system whose legs are comprised of two such chains. We show that the ladder hosts a rich phase diagram and related edge mode structure dictated by choice of inter-chain and intra-chain couplings. Namely, we exhibit three distinct physical regimes: a topological hosting localized zero energy edge modes, a topologically trivial phase having no edge mode structure, and a regime reminiscent of a weak topological insulator having unprotected edge modes resembling a twin-SSH construction. In the topological phase, the SSH ladder system acts as an analog of the Kitaev chain, which is known to support localized Majorana fermion end modes, with the difference that bound states of the SSH ladder having the same spatial wavefunction profiles correspond to Dirac fermion modes. Further, inhomogeneity in the couplings can have a drastic effect on the topological phase diagram of the ladder system. In particular for quasiperiodic variations of the inter-chain coupling, the phase diagram reproduces Hofstadters butterfly pattern. We thus identify the SSH ladder system as a potential candidate for experimental observation of such fractal structure.
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Ho fstadter spectrum is analyzed for different regimes of the driving frequency. For lower frequencies, resonances of various copies of the spectrum lead to intricate formations of topological gaps. In the Landau-level regime, new wing-like gaps emerge upon reducing the driving frequency, thus revealing the possibility of dynamically tuning the formation of the Hofstadter butterfly. In this regime, an effective model may be analytically derived, which allows us to retrace the energy levels that exhibit avoided crossings and ultimately lead to gap structures with a wing-like shape. At high frequencies, we find that gaps open for various fluxes at $E=0$, and upon increasing the amplitude of the driving, gaps also close and reopen at other energies. The topological invariants of these gaps are calculated and the resulting spectrum is elucidated. We suggest opportunities for experimental realization and discuss similarities with Landau-level structures in non-driven systems.
We theoretically study the Hofstadter butterfly of a triangular network model in minimally twisted bilayer graphene (mTBLG). The band structure manifests periodicity in energy, mimicking that of Floquet systems. The butterfly diagrams provide fingerp rints of the model parameters and reveal the hidden band topology. In a strong magnetic field, we establish that mTBLG realizes low-energy Floquet topological insulators (FTIs) carrying zero Chern number, while hosting chiral edge states in bulk gaps. We identify the FTIs by analyzing the nontrivial spectral flow in the Hofstadter butterfly, and by explicitly computing the chiral edge states. Our theory paves the way for an effective practical realization of FTIs in equilibrium solid state systems.
We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as th e magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner invariant.
The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly. Our study reveals the existence of a set of critical points, each corresponding to a macroscopic annihilation of orderly patterns of both the positive and the negative Cherns that appears as a fine structure in the butterfly. Such topological collapses are identified with the Van Hove singularities that exists at every band center in the butterfly landscape. We thus associate a topological character to the Van Hove anomalies. Finally, we show that this fine structure is amplified under perturbation, inducing quantum phase transitions to higher Chern states in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا