ﻻ يوجد ملخص باللغة العربية
Motivated by recent experimental realizations of topological edge states in Su-Schrieffer-Heeger (SSH) chains, we theoretically study a ladder system whose legs are comprised of two such chains. We show that the ladder hosts a rich phase diagram and related edge mode structure dictated by choice of inter-chain and intra-chain couplings. Namely, we exhibit three distinct physical regimes: a topological hosting localized zero energy edge modes, a topologically trivial phase having no edge mode structure, and a regime reminiscent of a weak topological insulator having unprotected edge modes resembling a twin-SSH construction. In the topological phase, the SSH ladder system acts as an analog of the Kitaev chain, which is known to support localized Majorana fermion end modes, with the difference that bound states of the SSH ladder having the same spatial wavefunction profiles correspond to Dirac fermion modes. Further, inhomogeneity in the couplings can have a drastic effect on the topological phase diagram of the ladder system. In particular for quasiperiodic variations of the inter-chain coupling, the phase diagram reproduces Hofstadters butterfly pattern. We thus identify the SSH ladder system as a potential candidate for experimental observation of such fractal structure.
We address the conditions required for a $mathbb{Z}$ topological classification in the most general form of the non-Hermitian Su-Schrieffer-Heeger (SSH) model. Any chirally-symmetric SSH model will possess a conjugated-pseudo-Hermiticity which we sho
In this work, we study the topological phases of the dimerized square lattice in the presence of an external magnetic field. The dimerization pattern in the lattices hopping amplitudes can induce a series of bulk energy gap openings in the Hofstadter
In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of t
We investigate topological and disorder effects in non-Hermitian systems with chiral symmetry. The system under consideration consists in a finite Su-Schrieffer-Heeger chain to which two semi-infinite leads are attached. The system lacks the parity-t
A network model that can describe light propagation in one-dimensional ring-resonator arrays with a dimer structure is studied as a Su-Schrieffer-Heeger-type Floquet network. The model can be regarded as a Floquet system without periodic driving and