ﻻ يوجد ملخص باللغة العربية
Explainable AI has attracted much research attention in recent years with feature attribution algorithms, which compute feature importance in predictions, becoming increasingly popular. However, there is little analysis of the validity of these algorithms as there is no ground truth in the existing datasets to validate their correctness. In this work, we develop a method to quantitatively evaluate the correctness of XAI algorithms by creating datasets with known explanation ground truth. To this end, we focus on the binary classification problems. String datasets are constructed using formal language derived from a grammar. A string is positive if and only if a certain property is fulfilled. Symbols serving as explanation ground truth in a positive string are part of an explanation if and only if they contributes to fulfilling the property. Two popular feature attribution explainers, Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), are used in our experiments.We show that: (1) classification accuracy is positively correlated with explanation accuracy; (2) SHAP provides more accurate explanations than LIME; (3) explanation accuracy is negatively correlated with dataset complexity.
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of predict
Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on ma
Explainable artificially intelligent (XAI) systems form part of sociotechnical systems, e.g., human+AI teams tasked with making decisions. Yet, current XAI systems are rarely evaluated by measuring the performance of human+AI teams on actual decision
AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transpare
Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by expla