ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge-intensive Language Understanding for Explainable AI

200   0   0.0 ( 0 )
 نشر من قبل Kaushik Roy
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transparency, and explainability are key to developing trusts in AI systems. As stated in describing trustworthy AI Trust comes through understanding. How AI-led decisions are made and what determining factors were included are crucial to understand. The subarea of explaining AI systems has come to be known as XAI. Multiple aspects of an AI system can be explained; these include biases that the data might have, lack of data points in a particular region of the example space, fairness of gathering the data, feature importances, etc. However, besides these, it is critical to have human-centered explanations that are directly related to decision-making similar to how a domain expert makes decisions based on domain knowledge, that also include well-established, peer-validated explicit guidelines. To understand and validate an AI systems outcomes (such as classification, recommendations, predictions), that lead to developing trust in the AI system, it is necessary to involve explicit domain knowledge that humans understand and use.

قيم البحث

اقرأ أيضاً

Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by expla ining what they are, how they can be generated and how they can be evaluated. We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space. In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.
Large-scale natural language understanding (NLU) systems have made impressive progress: they can be applied flexibly across a variety of tasks, and employ minimal structural assumptions. However, extensive empirical research has shown this to be a do uble-edged sword, coming at the cost of shallow understanding: inferior generalization, grounding and explainability. Grounded language learning approaches offer the promise of deeper understanding by situating learning in richer, more structured training environments, but are limited in scale to relatively narrow, predefined domains. How might we enjoy the best of both worlds: grounded, general NLU? Following extensive contemporary cognitive science, we propose treating environments as first-class citizens in semantic representations, worthy of research and development in their own right. Importantly, models should also be partners in the creation and configuration of environments, rather than just actors within them, as in existing approaches. To do so, we argue that models must begin to understand and program in the language of affordances (which define possible actions in a given situation) both for online, situated discourse comprehension, as well as large-scale, offline common-sense knowledge mining. To this end we propose an environment-oriented ecological semantics, outlining theoretical and practical approaches towards implementation. We further provide actual demonstrations building upon interactive fiction programming languages.
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learn ing techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for todays artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users and situational needs.
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of predict ion accuracy as well as transparent explanations are valuable. In this work, we present an explainable classification method. Our method works by first constructing a symbolic Knowledge Base from the training data, and then performing probabilistic inferences on such Knowledge Base with linear programming. Our approach achieves a level of learning performance comparable to that of traditional classifiers such as random forests, support vector machines and neural networks. It identifies decisive features that are responsible for a classification as explanations and produces results similar to the ones found by SHAP, a state of the art Shapley Value based method. Our algorithms perform well on a range of synthetic and non-synthetic data sets.
This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best hypotheses returned by the Automatic Speech Recognition. Most current models for spoken language understanding assume (i) word-aligned semantic annotations as in sequence taggers and (ii) delexicalisation, or a mapping of input words to domain-specific concepts using heuristics that try to capture morphological variation but that do not scale to other domains nor to language variation (e.g., morphology, synonyms, paraphrasing ). In this work the semantic decoder is trained using unaligned semantic annotations and it uses distributed semantic representation learning to overcome the limitations of explicit delexicalisation. The proposed architecture uses a convolutional neural network for the sentence representation and a long-short term memory network for the context representation. Results are presented for the publicly available DSTC2 corpus and an In-car corpus which is similar to DSTC2 but has a significantly higher word error rate (WER).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا