ﻻ يوجد ملخص باللغة العربية
Chinese word segmentation (CWS) is the basic of Chinese natural language processing (NLP). The quality of word segmentation will directly affect the rest of NLP tasks. Recently, with the artificial intelligence tide rising again, Long Short-Term Memory (LSTM) neural network, as one of easily modeling in sequence, has been widely utilized in various kinds of NLP tasks, and functions well. Attention mechanism is an ingenious method to solve the memory compression problem on LSTM. Furthermore, inspired by the powerful abilities of bidirectional LSTM models for modeling sequence and CRF model for decoding, we propose a Bidirectional LSTM-CRF Attention-based Model in this paper. Experiments on PKU and MSRA benchmark datasets show that our model performs better than the baseline methods modeling by other neural networks.
Chinese word segmentation and dependency parsing are two fundamental tasks for Chinese natural language processing. The dependency parsing is defined on word-level. Therefore word segmentation is the precondition of dependency parsing, which makes de
In this paper, we develop a low than character feature embedding called radical embedding, and apply it on LSTM model for sentence segmentation of pre modern Chinese texts. The datasets includes over 150 classical Chinese books from 3 different dynas
Chinese word segmentation (CWS) is often regarded as a character-based sequence labeling task in most current works which have achieved great success with the help of powerful neural networks. However, these works neglect an important clue: Chinese c
Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will h
Multi-criteria Chinese word segmentation is a promising but challenging task, which exploits several different segmentation criteria and mines their common underlying knowledge. In this paper, we propose a flexible multi-criteria learning for Chinese