ترغب بنشر مسار تعليمي؟ اضغط هنا

Bidirectional LSTM-CRF Attention-based Model for Chinese Word Segmentation

120   0   0.0 ( 0 )
 نشر من قبل Zhuangwei Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Chinese word segmentation (CWS) is the basic of Chinese natural language processing (NLP). The quality of word segmentation will directly affect the rest of NLP tasks. Recently, with the artificial intelligence tide rising again, Long Short-Term Memory (LSTM) neural network, as one of easily modeling in sequence, has been widely utilized in various kinds of NLP tasks, and functions well. Attention mechanism is an ingenious method to solve the memory compression problem on LSTM. Furthermore, inspired by the powerful abilities of bidirectional LSTM models for modeling sequence and CRF model for decoding, we propose a Bidirectional LSTM-CRF Attention-based Model in this paper. Experiments on PKU and MSRA benchmark datasets show that our model performs better than the baseline methods modeling by other neural networks.



قيم البحث

اقرأ أيضاً

Chinese word segmentation and dependency parsing are two fundamental tasks for Chinese natural language processing. The dependency parsing is defined on word-level. Therefore word segmentation is the precondition of dependency parsing, which makes de pendency parsing suffer from error propagation and unable to directly make use of the character-level pre-trained language model (such as BERT). In this paper, we propose a graph-based model to integrate Chinese word segmentation and dependency parsing. Different from previous transition-based joint models, our proposed model is more concise, which results in fewer efforts of feature engineering. Our graph-based joint model achieves better performance than previous joint models and state-of-the-art results in both Chinese word segmentation and dependency parsing. Besides, when BERT is combined, our model can substantially reduce the performance gap of dependency parsing between joint models and gold-segmented word-based models. Our code is publicly available at https://github.com/fastnlp/JointCwsParser.
In this paper, we develop a low than character feature embedding called radical embedding, and apply it on LSTM model for sentence segmentation of pre modern Chinese texts. The datasets includes over 150 classical Chinese books from 3 different dynas ties and contains different literary styles. LSTM CRF model is a state of art method for the sequence labeling problem. Our new model adds a component of radical embedding, which leads to improved performances. Experimental results based on the aforementioned Chinese books demonstrates a better accuracy than earlier methods on sentence segmentation, especial in Tang Epitaph texts.
Chinese word segmentation (CWS) is often regarded as a character-based sequence labeling task in most current works which have achieved great success with the help of powerful neural networks. However, these works neglect an important clue: Chinese c haracters incorporate both semantic and phonetic meanings. In this paper, we introduce multiple character embeddings including Pinyin Romanization and Wubi Input, both of which are easily accessible and effective in depicting semantics of characters. We propose a novel shared Bi-LSTM-CRF model to fuse linguistic features efficiently by sharing the LSTM network during the training procedure. Extensive experiments on five corpora show that extra embeddings help obtain a significant improvement in labeling accuracy. Specifically, we achieve the state-of-the-art performance in AS and CityU corpora with F1 scores of 96.9 and 97.3, respectively without leveraging any external lexical resources.
Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will h ave enough time to take preventive measures. The purpose of this work is to investigate the application of bidirectional LSTM for seizure prediction. In this paper, we trained EEG data from canines on a double Bidirectional LSTM layer followed by a fully connected layer. The data was provided in the form of a Kaggle competition by American Epilepsy Society. The main task was to classify the interictal and preictal EEG clips. Using this model, we obtained an AUC of 0.84 on the test dataset. Which shows that our classifiers performance is above chance level on unseen data. The comparison with the previous work shows that the use of bidirectional LSTM networks can achieve significantly better results than SVM and GRU networks.
Multi-criteria Chinese word segmentation is a promising but challenging task, which exploits several different segmentation criteria and mines their common underlying knowledge. In this paper, we propose a flexible multi-criteria learning for Chinese word segmentation. Usually, a segmentation criterion could be decomposed into multiple sub-criteria, which are shareable with other segmentation criteria. The process of word segmentation is a routing among these sub-criteria. From this perspective, we present Switch-LSTMs to segment words, which consist of several long short-term memory neural networks (LSTM), and a switcher to automatically switch the routing among these LSTMs. With these auto-switched LSTMs, our model provides a more flexible solution for multi-criteria CWS, which is also easy to transfer the learned knowledge to new criteria. Experiments show that our model obtains significant improvements on eight corpora with heterogeneous segmentation criteria, compared to the previous method and single-criterion learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا