ﻻ يوجد ملخص باللغة العربية
To bridge the gap between limited hardware access and the huge demand for experiments for Noisy Intermediate-Scale Quantum (NISQ) computing system study, a simulator which can capture the modeling of both the quantum processor and its classical control system to realize early-stage evaluation and design space exploration, is naturally invoked but still missing. This paper presents SANQ, a Simulation framework for Architecting NISQ computing system. SANQ consists of two components, 1) an optimized noisy quantum computing (QC) simulator with flexible error modeling accelerated by eliminating redundant computation, and 2) an architectural simulation infrastructure to construct behavior models for evaluating the control systems. SANQ is validated with existing NISQ quantum processor and control systems to ensure simulation accuracy. It can capture the variance on the QC device and simulate the timing behavior precisely (<1% and 10% error for various real control systems). Several potential applications are proposed to show that SANQ could benefit the future design of NISQ compiler, architecture, etc.
Trapped ions (TI) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies such as superconducting qubits, including high qubit quality, coherence and connect
Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantu
Considering the large-scale quantum computer, it is important to know how much quantum computational resources is necessary precisely and quickly. Unfortunately the previous methods so far cannot support a large-scale quantum computing practically an
Noisy, intermediate-scale quantum (NISQ) computing devices offer opportunities to test the principles of quantum computing but are prone to errors arising from various sources of noise. Fluctuations in the noise itself lead to unstable devices that u
We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-i