ﻻ يوجد ملخص باللغة العربية
We investigate the properties of foliated gauge fields and construct several foliated field theories in 3+1d that describe foliated fracton orders both with and without matter, including the recent hybrid fracton models. These field theories describe Abelian or non-Abelian gauge theories coupled to foliated gauge fields, and they fall into two classes of models that we call the electric models and the magnetic models. We show that these two classes of foliated field theories enjoy a duality. We also construct a model (using foliated gauge fields and an exactly solvable lattice Hamiltonian model) for a subsystem-symmetry protected topological (SSPT) phase, which is analogous to a one-form symmetry protected topological phase, with the subsystem symmetry acting on codimension-two subregions. We construct the corresponding gauged SSPT phase as a foliated two-form gauge theory. Some instances of the gauged SSPT phase are a variant of the X-cube model with the same ground state degeneracy and the same fusion, but different particle statistics.
We derive a canonical form for 2-group gauge theory in 3+1D which shows they are either equivalent to Dijkgraaf-Witten theory or to the so-called EF1 topological order of Lan-Wen. According to that classification, recently argued from a different poi
We classify symmetry fractionalization and anomalies in a (3+1)d U(1) gauge theory enriched by a global symmetry group $G$. We find that, in general, a symmetry-enrichment pattern is specified by 4 pieces of data: $rho$, a map from $G$ to the duality
Compact quantum electrodynamics (CQED$_3$) with Dirac fermionic matter provides an adequate framework for elucidating the universal low-energy physics of a wide variety of (2+1)D strongly correlated systems. Fractionalized states of matter correspond
The classification of topological phases of matter in the presence of interactions is an area of intense interest. One possible means of classification is via studying the partition function under modular transforms, as the presence of an anomalous p
We compute the topological entanglement entropy for a large set of lattice models in $d$-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are general