ﻻ يوجد ملخص باللغة العربية
We derive a canonical form for 2-group gauge theory in 3+1D which shows they are either equivalent to Dijkgraaf-Witten theory or to the so-called EF1 topological order of Lan-Wen. According to that classification, recently argued from a different point of view by Johnson-Freyd, this amounts to a very large class of all 3+1D TQFTs. We use this canonical form to compute all possible anomalies of 2-group gauge theory which may occur without spontaneous symmetry breaking, providing a converse of the recent symmetry-enforced-gaplessness constraints of Cordova-Ohmori and also uncovering some possible new examples. On the other hand, in cases where the anomaly is matched by a TQFT, we try to provide the simplest possible such TQFT. For example, with anomalies involving time reversal, $mathbb{Z}_2$ gauge theory almost always works.
We investigate the properties of foliated gauge fields and construct several foliated field theories in 3+1d that describe foliated fracton orders both with and without matter, including the recent hybrid fracton models. These field theories describe
Compact quantum electrodynamics (CQED$_3$) with Dirac fermionic matter provides an adequate framework for elucidating the universal low-energy physics of a wide variety of (2+1)D strongly correlated systems. Fractionalized states of matter correspond
We discuss a recipe to produce a lattice construction of fermionic phases of matter on unoriented manifolds. This is performed by extending the construction of spin TQFT via the Grassmann integral proposed by Gaiotto and Kapustin, to the unoriented p
Introducing both Berry curvature and chiral anomaly into Landaus Fermi-liquid theory, we construct a topological Fermi-liquid theory, applicable to interacting Weyl metals in the absence of time reversal symmetry. Following the Landaus Fermi-liquid t
We classify symmetry fractionalization and anomalies in a (3+1)d U(1) gauge theory enriched by a global symmetry group $G$. We find that, in general, a symmetry-enrichment pattern is specified by 4 pieces of data: $rho$, a map from $G$ to the duality