ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-breaking effects of instantons in parton gauge theories

93   0   0.0 ( 0 )
 نشر من قبل G. Shankar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact quantum electrodynamics (CQED$_3$) with Dirac fermionic matter provides an adequate framework for elucidating the universal low-energy physics of a wide variety of (2+1)D strongly correlated systems. Fractionalized states of matter correspond to its deconfined phases, where the gauge field is effectively noncompact, while conventional broken-symmetry phases are associated with confinement triggered by the proliferation of monopole-instantons. While much attention has been devoted lately to the symmetry classification of monopole operators in massless CQED$_3$ and related 3D conformal field theories, explicit derivations of instanton dynamics in parton gauge theories with fermions have been lacking. In this work, we use semiclassical methods analogous to those used by t Hooft in the solution of the $U(1)$ problem in 4D quantum chromodynamics (QCD) to explicitly demonstrate the symmetry-breaking effect of instantons in CQED$_3$ with massive fermions, motivated by a fermionic parton description of hard-core bosons on a lattice. By contrast with the massless case studied by Marston, we find that massive fermions possess Euclidean zero modes exponentially localized to the center of the instanton. Such Euclidean zero modes produce in turn an effective four-fermion interaction -- known as the t Hooft vertex in QCD -- which naturally leads to two possible superfluid phases for the original microscopic bosons: a conventional single-particle condensate or an exotic boson pair condensate without single-particle condensation.



قيم البحث

اقرأ أيضاً

97 - Ryan Thorngren 2020
We derive a canonical form for 2-group gauge theory in 3+1D which shows they are either equivalent to Dijkgraaf-Witten theory or to the so-called EF1 topological order of Lan-Wen. According to that classification, recently argued from a different poi nt of view by Johnson-Freyd, this amounts to a very large class of all 3+1D TQFTs. We use this canonical form to compute all possible anomalies of 2-group gauge theory which may occur without spontaneous symmetry breaking, providing a converse of the recent symmetry-enforced-gaplessness constraints of Cordova-Ohmori and also uncovering some possible new examples. On the other hand, in cases where the anomaly is matched by a TQFT, we try to provide the simplest possible such TQFT. For example, with anomalies involving time reversal, $mathbb{Z}_2$ gauge theory almost always works.
We classify symmetry fractionalization and anomalies in a (3+1)d U(1) gauge theory enriched by a global symmetry group $G$. We find that, in general, a symmetry-enrichment pattern is specified by 4 pieces of data: $rho$, a map from $G$ to the duality symmetry group of this $mathrm{U}(1)$ gauge theory which physically encodes how the symmetry permutes the fractional excitations, $ uinmathcal{H}^2_{rho}[G, mathrm{U}_mathsf{T}(1)]$, the symmetry actions on the electric charge, $pinmathcal{H}^1[G, mathbb{Z}_mathsf{T}]$, indication of certain domain wall decoration with bosonic integer quantum Hall (BIQH) states, and a torsor $n$ over $mathcal{H}^3_{rho}[G, mathbb{Z}]$, the symmetry actions on the magnetic monopole. However, certain choices of $(rho, u, p, n)$ are not physically realizable, i.e. they are anomalous. We find that there are two levels of anomalies. The first level of anomalies obstruct the fractional excitations being deconfined, thus are referred to as the deconfinement anomaly. States with these anomalies can be realized on the boundary of a (4+1)d long-range entangled state. If a state does not suffer from a deconfinement anomaly, there can still be the second level of anomaly, the more familiar t Hooft anomaly, which forbids certain types of symmetry fractionalization patterns to be implemented in an on-site fashion. States with these anomalies can be realized on the boundary of a (4+1)d short-range entangled state. We apply these results to some interesting physical examples.
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ plays an important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the deconfinement temperature $T_c$ from above, the eigenvalue spectrum has a finite density at $omega = 0$, indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of monopoles on the lattice.
157 - Thomas Appelquist 1997
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches de scribe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under U(1) gauge and SU(N) transformations. We consider gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term, and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the continuous transitions associated with the charged fixed point of the AH field theory. We discuss their relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from U(N) to O(2N), which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH parameters and of the photon mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا