ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate a new multi-armed bandit (MAB) online learning model that considers real-world phenomena in many recommender systems: (i) the learning agent cannot pull the arms by itself and thus has to offer rewards to users to incentivize arm-pulling indirectly; and (ii) if users with specific arm preferences are well rewarded, they induce a self-reinforcing effect in the sense that they will attract more users of similar arm preferences. Besides addressing the tradeoff of exploration and exploitation, another key feature of this new MAB model is to balance reward and incentivizing payment. The goal of the agent is to maximize the total reward over a fixed time horizon $T$ with a low total payment. Our contributions in this paper are two-fold: (i) We propose a new MAB model with random arm selection that considers the relationship of users self-reinforcing preferences and incentives; and (ii) We leverage the properties of a multi-color Polya urn with nonlinear feedback model to propose two MAB policies termed At-Least-$n$ Explore-Then-Commit and UCB-List. We prove that both policies achieve $O(log T)$ expected regret with $O(log T)$ expected payment over a time horizon $T$. We conduct numerical simulations to demonstrate and verify the performances of these two policies and study their robustness under various settings.
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain us
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved th
Adam is a widely used optimization method for training deep learning models. It computes individual adaptive learning rates for different parameters. In this paper, we propose a generalization of Adam, called Adambs, that allows us to also adapt to d
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervis
We consider the problem of learning in episodic finite-horizon Markov decision processes with an unknown transition function, bandit feedback, and adversarial losses. We propose an efficient algorithm that achieves $mathcal{tilde{O}}(L|X|sqrt{|A|T})$