ﻻ يوجد ملخص باللغة العربية
The existence of a fundamental scale is expected to be a key feature of quantum gravity. Many approaches take this property as a starting assumption. Here, instead, we take a less conventional viewpoint based on a critical inspection of both fundamental principles and kinematic laws. We point out that rigorous arguments suggest a more urgent need to revise known theories to incorporate a fundamental acceleration scale already in flat space. The reciprocity principle can naturally do so. In addition to noticing links with string theory, we argue that the reciprocity principle implies an infinite-derivative generalization of the Einstein-Hilbert action that makes the gravitational interaction fundamentally nonlocal, thus providing a guiding principle that could lead us towards the formulation of a consistent theory of quantum gravity.
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new
The extremal Reissner-Nordstrom black hole admits a conformal inversion symmetry, in which the metric is mapped into itself under an inversion of the radial coordinate combined with a conformal rescaling. In the rotating generalisation, Couch and Tor
Recent tests have generated impressive reach in the gravity sector of the Standard-Model Extension. This contribution to the CPT19 proceedings summarizes this progress and maps the structure of work in the gravity sector.
While all bipartite pure entangled states are known to generate correlations violating a Bell inequality, and are therefore nonlocal, the quantitative relation between pure-state entanglement and nonlocality is poorly understood. In fact, some Bell i
I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a mu