ﻻ يوجد ملخص باللغة العربية
While all bipartite pure entangled states are known to generate correlations violating a Bell inequality, and are therefore nonlocal, the quantitative relation between pure-state entanglement and nonlocality is poorly understood. In fact, some Bell inequalities are maximally violated by non-maximally entangled states and this phenomenon is also observed for other operational measures of nonlocality. In this work, we study a recently proposed measure of nonlocality defined as the probability that a pure state displays nonlocal correlations when subjected to random measurements. We first prove that this measure satisfies some natural properties for an operational measure of nonlocality. Then, we show that for pure states of two qubits the measure is monotonic with entanglement for all correlation two-outcome Bell inequalities: for all these inequalities, the more the state is entangled, the larger the probability to violate them when random measurements are performed. Finally, we extend our results to the multipartite setting.
We show how to create maximal entanglement between spectrally distinct solid-state emitters embedded in a waveguide interferometer. By revealing the rich underlying structure of multi-photon scattering in emitters, we show that a two-photon input sta
The existence of a fundamental scale is expected to be a key feature of quantum gravity. Many approaches take this property as a starting assumption. Here, instead, we take a less conventional viewpoint based on a critical inspection of both fundamen
Minimal, open quantum systems that are governed by non-Hermitian Hamiltonians have been realized across multiple platforms in the past two years. Here we investigate the dynamics of open systems with Hermitian or anti-Hermitian Hamiltonians, both of
In this work, we study the numerical optimization of nearest-neighbor concurrence of bipartite one and two dimensional lattices, as well as non bipartite two dimensional lattices. These systems are described in the framework of a tight-binding Hamilt
Owing to a reduced solar background and low propagation losses in the atmosphere, the 2- to 2.5-$mu$m waveband is a promising candidate for daylight quantum communication. This spectral region also offers low losses and low dispersion in hollow-core