Recent tests have generated impressive reach in the gravity sector of the Standard-Model Extension. This contribution to the CPT19 proceedings summarizes this progress and maps the structure of work in the gravity sector.
The experimental observation of a clear quantum signature of gravity is believed to be out of the grasp of current technology. However, several recent promising proposals to test the possible existence of non-classical features of gravity seem to be
accessible by the state-of-art table-top experiments. Among them, some aim at measuring the gravitationally induced entanglement between two masses which would be a distinct non-classical signature of gravity. We explicitly study, in two of these proposals, the effects of decoherence on the systems dynamics by monitoring the corresponding degree of entanglement. We identify the required experimental conditions necessary to perform successfully the experiments. In parallel, we account also for the possible effects of the Continuous Spontaneous Localization (CSL) model, which is the most known among the models of spontaneous wavefunction collapse. We find that any value of the parameters of the CSL model would completely hinder the generation of gravitationally induced entanglement.
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher dimensional approaches and chameleon/f
(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from ~kpc (galaxy scales) to ~Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the Integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages --- we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
Erik Verlindes theory of entropic gravity [arXiv:1001.0785], postulating that gravity is not a fundamental force but rather emerges thermodynamically, has garnered much attention as a possible resolution to the quantum gravity problem. Some have rule
d this theory out on grounds that entropic forces are by nature noisy and entropic gravity would therefore display far more decoherence than is observed in ultra-cold neutron experiments. We address this criticism by modeling linear gravity acting on small objects as an open quantum system. In the strong coupling limit, when the models unitless free parameter $sigma$ goes to infinity, the entropic master equation recovers conservative gravity. We show that the proposed master equation is fully compatible with the textit{q}textsc{Bounce} experiment for ultra-cold neutrons as long as $sigmagtrsim 250$ at $90%$ confidence. Furthermore, the entropic master equation predicts energy increase and decoherence on long time scales and for large masses, phenomena which tabletop experiments could test. In addition, comparing entropic gravitys energy increase to that of the Di{o}si-Penrose model for gravity induced decoherence indicates that the two theories are incompatible. These findings support the theory of entropic gravity, motivating future experimental and theoretical research.
Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding
coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be fuzzy in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.
The non-local correlations exhibited when measuring entangled particles can be used to certify the presence of genuine randomness in Bell experiments. While non-locality is necessary for randomness certification, it is unclear when and why non-locali
ty certifies maximal randomness. We provide here a simple argument to certify the presence of maximal local and global randomness based on symmetries of a Bell inequality and the existence of a unique quantum probability distribution that maximally violates it. Using our findings, we prove the existence of N-party Bell test attaining maximal global randomness, that is, where a combination of measurements by each party provides N perfect random bits.