ﻻ يوجد ملخص باللغة العربية
A broad class of forces P is identified for which the Abraham-Lorentz-Dirac (ALD) equation has common solutions with a Newton type equation that do not present pre-acceleration or escape into infinity (runaway behavior). It is argued that the given class can approximate with arbitrary precision any continuous or piecewise continuous force. For the general case of such forces, the existence of common solutions to the ALD and the Newton type equations in terms of generalized functions defined on P is argued. The existence of such solutions is explicitly demonstrated here for the important example of the instantly connected constant force. Expressions for the position and velocity are defined by generalized functions with point support in the initial time in which force is applied. It follows that both, the velocity as the coordinates are discontinuous at the support point, at the instant where the force is applied. The unusual discontinuity in the position that appears is justified by the presence of impulsive forces that determine instantaneous jumps in the coordinates. This result is compatible with the non relativistic limit under consideration and is expected to be explained after a further relativistic generalization of the discussion here. The solution obtained for this class of forces reproduces the one obtained by A. Yaghjian, from his equations for the extended particle moving between the plates of a capacitor. This outcome suggests the possible link or equivalence between this two analysis. The common solution of the Newton like equations and the ALD ones for the case of a constant and homogeneous magnetic field is also presented. The extension the results to a relativistic limit will be investigated in future works.
From electromagnetic wave equations, it is first found that, mathematically, any current density that emits an electromagnetic wave into the far-field region has to be differentiable in time infinitely, and that while the odd-order time derivatives o
A stochastic model is proposed for the acceleration of non-relativistic particles yielding to energy spectra with a shape of a Weibulltextquoteright s function. Such particle distribution is found as the stationary solution of a diffusion-loss equati
In this paper we show that the Schrodinger-Newton equation for spherically symmetric gravitational fields can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon and Einstein-Dirac system.
Accelerating electrons are known to radiate electromagnetic waves, a property that is central to the concept of many devices, from antennas to synchrotrons. While the electrodynamics of accelerating charged particles is well understood, the same is n
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit, with