ﻻ يوجد ملخص باللغة العربية
A stochastic model is proposed for the acceleration of non-relativistic particles yielding to energy spectra with a shape of a Weibulltextquoteright s function. Such particle distribution is found as the stationary solution of a diffusion-loss equation in the framework of a second order Fermitextquoteright s mechanism producing anomalous diffusion for particle velocity. The present model is supported by in situ observations of energetic particle enhancements at interplanetary shocks, as here illustrated by means of an event seen by STEREO B instruments in the heliosphere. Results indicate that the second order Fermitextquoteright s mechanism provides a viable explanation for the acceleration of energetic particles at collisioness shock waves.
Based on Magnetospheric Multiscale (MMS) observations from the Earths bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating
The Fermi LAT discovery that classical novae produce >100 MeV gamma-rays establishes that shocks and relativistic particle acceleration are key features of these events. These shocks are likely to be radiative due to the high densities of the nova ej
Several types of foreshock transients upstream of Earths bow shock possessing a tenuous, hot core have been observed and simulated. Because of the low dynamic pressure in their cores, these phenomena can significantly disturb the bow shock and the ma
Powerful stellar winds and supernova explosions with intense energy release in the form of strong shock waves can convert a sizeable part of the kinetic energy release into energetic particles. The starforming regions are argued as a favorable site o
We use particle-in-magnetohydrodynamics-cells to model particle acceleration and magnetic field amplification in a high Mach, parallel shock in three dimensions and compare the result to 2-D models. This allows us to determine whether 2-D simulations