ﻻ يوجد ملخص باللغة العربية
An electron beam is deflected when it passes over a silicon nitride surface, if the surface is illuminated by a low-power continuous-wave diode laser. A deflection angle of up-to $1.2 ,textrm{mrad}$ is achieved for an electron beam of $29 ,mutextrm{rad}$ divergence. A mechanical beam-stop is used to demonstrate that the effect can act as an optical electron switch with a rise and fall time of $6 ,mutextrm{s}$. Such a switch provides an alternative means to control electron beams, which may be useful in electron lithography and microscopy.
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f
We demonstrate that the conductance switching of benzo-bis(imidazole) molecules upon protonation depends on the lateral functional groups. The protonated H-substituted molecule shows a higher conductance than the neutral one (Gpro>Gneu), while the op
Our study shows that deposited Ge and Si dielectric thin-films can exhibit low microwave losses at near single-photon powers and sub-Kelvin temperatures ($approx$40 mK). This low loss enables their use in a wide range of devices, including low-loss c
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a new platform based on strong light-matter coupling between wavegui
Integrated optical devices able to control light matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for tel