ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters

151   0   0.0 ( 0 )
 نشر من قبل Christophe Couteau Assoc Prof
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrated optical devices able to control light matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for telecommunication wavelengths. In this contribution, we propose an integrated device that operates with light in the visible spectrum. The proposed device is a hybrid structure consisting of a high-refractive-index layer placed on top of an ion-exchanged glass waveguide. We demonstrate that this hybrid structure serves as an efficient light coupler for the excitation of nanoemitters. The numerical and experimental results show that the device can enhance the electromagnetic field confinement up to 11 times, allowing a higher photoluminescence signal from nanocrystals placed on its surface. The designed device opens new perspectives in the generation of new optical devices suitable for quantum information or for optical sensing.



قيم البحث

اقرأ أيضاً

We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external respo nsivity~12.2V/W with a 3dB bandwidth~42GHz. We utilize Au split-gates with a$sim$100nm gap to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele and datacom modules
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best s upported by very different materials types -- electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling towards high-density integrated bioelectronic circuitry.
Although the structural phase transitions in single-crystal hybrid methyl-ammonium (MA) lead halide perovskites (MAPbX3, X = Cl, Br, I) are common phenomena, they have never been observed in the corresponding nanocrystals. Here we demonstrate that tw o-photon-excited photoluminescence (PL) spectroscopy is capable of monitoring the structural phase transitions in MAPbX3 nanocrystals because nonlinear susceptibilities govern the light absorption rates. We provide experimental evidence that the orthorhombic-to-tetragonal structural phase transition in a single layer of 20-nm-sized 3D MAPbBr3 nanocrystals is spread out within the 70 - 140 K range. This structural phase instability range arises because, unlike in single-crystal MAPbX3, free rotations of MA ions in the corresponding nanocrystals are no longer restricted by a long-range MA dipole order. The resulting configurational entropy loss can be even enhanced by the interfacial electric field arising due to charge separation at the MAPbBr3/ZnO heterointerface, extending the orthorhombic-to-tetragonal structural phase instability range from 70 to 230 K. We conclude that the weak sensitivity of conventional one-photon-excited PL spectroscopy to the structural phase transitions in 3D MAPbX3 nanocrystals results from the structural phase instability providing negligible distortions of PbX6 octahedra. In contrast, the intensity of two-photon-excited PL and electric-field-induced one-photon-excited PL still remains sensitive enough to weak structural distortions due to the higher rank tensor nature of nonlinear susceptibilities involved. We also show that room-temperature PL originates from the radiative recombination of the optical-phonon vibrationally excited polaronic quasiparticles with energies might exceed the ground-state Frohlich polaron and Rashba energies due to optical-phonon bottleneck.
Diamonds nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3 D optical waveguides and high quality single NVs in diamond were demonstrated using the versatile femtosecond laser-writing technique. However, until now, combining these technologies has been an outstanding challenge. In this work, we fabricate laser written photonic waveguides in quantum grade diamond which are aligned to within micron resolution to single laser-written NVs, enabling an integrated platform providing deterministically positioned waveguide-coupled NVs. This fabrication technology opens the way towards on-chip optical routing of single photons between NVs and optically integrated spin-based sensing.
Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths. Here, we report the first monolithically integrated avalanche photodetector (APD) for visible light. Our devices are based on a doped silicon rib waveguide with a novel end-fire input coupling to a silicon nitride waveguide. We demonstrate a high gain-bandwidth product of 216 $pm$ 12 GHz at 20 V reverse bias measured for 685 nm input light, with a low dark current of 0.12 $mu$A . This performance is very competitive when benchmarked against other integrated APDs operating in the infrared range. With CMOS-compatible fabrication and integrability with silicon nitride platforms, our devices are attractive for visible-light photonics applications in sensing and communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا