ﻻ يوجد ملخص باللغة العربية
Integrated optical devices able to control light matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for telecommunication wavelengths. In this contribution, we propose an integrated device that operates with light in the visible spectrum. The proposed device is a hybrid structure consisting of a high-refractive-index layer placed on top of an ion-exchanged glass waveguide. We demonstrate that this hybrid structure serves as an efficient light coupler for the excitation of nanoemitters. The numerical and experimental results show that the device can enhance the electromagnetic field confinement up to 11 times, allowing a higher photoluminescence signal from nanocrystals placed on its surface. The designed device opens new perspectives in the generation of new optical devices suitable for quantum information or for optical sensing.
We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external respo
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best s
Although the structural phase transitions in single-crystal hybrid methyl-ammonium (MA) lead halide perovskites (MAPbX3, X = Cl, Br, I) are common phenomena, they have never been observed in the corresponding nanocrystals. Here we demonstrate that tw
Diamonds nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3
Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths.