ﻻ يوجد ملخص باللغة العربية
Recent advances in generative machine learning models rekindled research interest in the area of password guessing. Data-driven password guessing approaches based on GANs, language models and deep latent variable models show impressive generalization performance and offer compelling properties for the task of password guessing. In this paper, we propose a flow-based generative model approach to password guessing. Flow-based models allow for precise log-likelihood computation and optimization, which enables exact latent variable inference. Additionally, flow-based models provide meaningful latent space representation, which enables operations such as exploration of specific subspaces of the latent space and interpolation. We demonstrate the applicability of generative flows to the context of password guessing, departing from previous applications of flow networks which are mainly limited to the continuous space of image generation. We show that the above-mentioned properties allow flow-based models to outperform deep latent variable model approaches and remain competitive with state-of-the-art GANs in the password guessing task, while using a training set that is orders of magnitudes smaller than that of previous art. Furthermore, a qualitative analysis of the generated samples shows that flow-based networks are able to accurately model the original passwords distribution, with even non-matched samples closely resembling human-like passwords.
State-of-the-art password guessing tools, such as HashCat and John the Ripper, enable users to check billions of passwords per second against password hashes. In addition to performing straightforward dictionary attacks, these tools can expand passwo
We describe a password generation scheme based on Markov models built from English text (specifically, Charles Dickens *A Tale Of Two Cities*). We show a (linear-running-time) bijection between random bitstrings of any desired length and generated te
Flow-based generative models have shown excellent ability to explicitly learn the probability density function of data via a sequence of invertible transformations. Yet, modeling long-range dependencies over normalizing flows remains understudied. To
In recent decades, criminals have increasingly used the web to research, assist and perpetrate criminal behaviour. One of the most important ways in which law enforcement can battle this growing trend is through accessing pertinent information about
In this work, we formally study the membership privacy risk of generative models and propose a membership privacy estimation framework. We formulate the membership privacy risk as a statistical divergence between training samples and hold-out samples