ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative Flows with Invertible Attentions

87   0   0.0 ( 0 )
 نشر من قبل Zhiwu Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Flow-based generative models have shown excellent ability to explicitly learn the probability density function of data via a sequence of invertible transformations. Yet, modeling long-range dependencies over normalizing flows remains understudied. To fill the gap, in this paper, we introduce two types of invertible attention mechanisms for generative flow models. To be precise, we propose map-based and scaled dot-product attention for unconditional and conditional generative flow models. The key idea is to exploit split-based attention mechanisms to learn the attention weights and input representations on every two splits of flow feature maps. Our method provides invertible attention modules with tractable Jacobian determinants, enabling seamless integration of it at any positions of the flow-based models. The proposed attention mechanism can model the global data dependencies, leading to more comprehensive flow models. Evaluation on multiple generation tasks demonstrates that the introduced attention flow idea results in efficient flow models and compares favorably against the state-of-the-art unconditional and conditional generative flow methods.



قيم البحث

اقرأ أيضاً

We propose a Multiscale Invertible Generative Network (MsIGN) and associated training algorithm that leverages multiscale structure to solve high-dimensional Bayesian inference. To address the curse of dimensionality, MsIGN exploits the low-dimension al nature of the posterior, and generates samples from coarse to fine scale (low to high dimension) by iteratively upsampling and refining samples. MsIGN is trained in a multi-stage manner to minimize the Jeffreys divergence, which avoids mode dropping in high-dimensional cases. On two high-dimensional Bayesian inverse problems, we show superior performance of MsIGN over previous approaches in posterior approximation and multiple mode capture. On the natural image synthesis task, MsIGN achieves superior performance in bits-per-dimension over baseline models and yields great interpret-ability of its neurons in intermediate layers.
Neural networks are vulnerable to input perturbations such as additive noise and adversarial attacks. In contrast, human perception is much more robust to such perturbations. The Bayesian brain hypothesis states that human brains use an internal gene rative model to update the posterior beliefs of the sensory input. This mechanism can be interpreted as a form of self-consistency between the maximum a posteriori (MAP) estimation of an internal generative model and the external environment. Inspired by such hypothesis, we enforce self-consistency in neural networks by incorporating generative recurrent feedback. We instantiate this design on convolutional neural networks (CNNs). The proposed framework, termed Convolutional Neural Networks with Feedback (CNN-F), introduces a generative feedback with latent variables to existing CNN architectures, where consistent predictions are made through alternating MAP inference under a Bayesian framework. In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
Real-world machine learning systems are achieving remarkable performance in terms of coarse-grained metrics like overall accuracy and F-1 score. However, model improvement and development often require fine-grained modeling on individual data subsets or slices, for instance, the data slices where the models have unsatisfactory results. In practice, it gives tangible values for developing such models that can pay extra attention to critical or interested slices while retaining the original overall performance. This work extends the recent slice-based learning (SBL)~cite{chen2019slice} with a mixture of attentions (MoA) to learn slice-aware dual attentive representations. We empirically show that the MoA approach outperforms the baseline method as well as the original SBL approach on monitored slices with two natural language understanding (NLU) tasks.
In this paper, we propose a simple yet effective method to represent point clouds as sets of samples drawn from a cloud-specific probability distribution. This interpretation matches intrinsic characteristics of point clouds: the number of points and their ordering within a cloud is not important as all points are drawn from the proximity of the object boundary. We postulate to represent each cloud as a parameterized probability distribution defined by a generative neural network. Once trained, such a model provides a natural framework for point cloud manipulation operations, such as aligning a new cloud into a default spatial orientation. To exploit similarities between same-class objects and to improve model performance, we turn to weight sharing: networks that model densities of points belonging to objects in the same family share all parameters with the exception of a small, object-specific embedding vector. We show that these embedding vectors capture semantic relationships between objects. Our method leverages generative invertible flow networks to learn embeddings as well as to generate point clouds. Thanks to this formulation and contrary to similar approaches, we are able to train our model in an end-to-end fashion. As a result, our model offers competitive or superior quantitative results on benchmark datasets, while enabling unprecedented capabilities to perform cloud manipulation tasks, such as point cloud registration and regeneration, by a generative network.
We address the problem of compressed sensing using a deep generative prior model and consider both linear and learned nonlinear sensing mechanisms, where the nonlinear one involves either a fully connected neural network or a convolutional neural net work. Recently, it has been argued that the distribution of natural images do not lie in a single manifold but rather lie in a union of several submanifolds. We propose a sparsity-driven latent space sampling (SDLSS) framework and develop a proximal meta-learning (PML) algorithm to enforce sparsity in the latent space. SDLSS allows the range-space of the generator to be considered as a union-of-submanifolds. We also derive the sample complexity bounds within the SDLSS framework for the linear measurement model. The results demonstrate that for a higher degree of compression, the SDLSS method is more efficient than the state-of-the-art method. We first consider a comparison between linear and nonlinear sensing mechanisms on Fashion-MNIST dataset and show that the learned nonlinear version is superior to the linear one. Subsequent comparisons with the deep compressive sensing (DCS) framework proposed in the literature are reported. We also consider the effect of the dimension of the latent space and the sparsity factor in validating the SDLSS framework. Performance quantification is carried out by employing three objective metrics: peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), and reconstruction error (RE).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا