ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Unsupervised Hashing by Distilled Smooth Guidance

143   0   0.0 ( 0 )
 نشر من قبل Xiao Luo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hashing has been widely used in approximate nearest neighbor search for its storage and computational efficiency. Deep supervised hashing methods are not widely used because of the lack of labeled data, especially when the domain is transferred. Meanwhile, unsupervised deep hashing models can hardly achieve satisfactory performance due to the lack of reliable similarity signals. To tackle this problem, we propose a novel deep unsupervised hashing method, namely Distilled Smooth Guidance (DSG), which can learn a distilled dataset consisting of similarity signals as well as smooth confidence signals. To be specific, we obtain the similarity confidence weights based on the initial noisy similarity signals learned from local structures and construct a priority loss function for smooth similarity-preserving learning. Besides, global information based on clustering is utilized to distill the image pairs by removing contradictory similarity signals. Extensive experiments on three widely used benchmark datasets show that the proposed DSG consistently outperforms the state-of-the-art search methods.



قيم البحث

اقرأ أيضاً

Due to the high storage and search efficiency, hashing has become prevalent for large-scale similarity search. Particularly, deep hashing methods have greatly improved the search performance under supervised scenarios. In contrast, unsupervised deep hashing models can hardly achieve satisfactory performance due to the lack of reliable supervisory similarity signals. To address this issue, we propose a novel deep unsupervised hashing model, dubbed DistillHash, which can learn a distilled data set consisted of data pairs, which have confidence similarity signals. Specifically, we investigate the relationship between the initial noisy similarity signals learned from local structures and the semantic similarity labels assigned by a Bayes optimal classifier. We show that under a mild assumption, some data pairs, of which labels are consistent with those assigned by the Bayes optimal classifier, can be potentially distilled. Inspired by this fact, we design a simple yet effective strategy to distill data pairs automatically and further adopt a Bayesian learning framework to learn hash functions from the distilled data set. Extensive experimental results on three widely used benchmark datasets show that the proposed DistillHash consistently accomplishes the state-of-the-art search performance.
92 - Jian Zhang , Yuxin Peng , 2017
Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised met hods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra correlations, while ignoring the underlying manifold structure across different modalities, which is extremely helpful to capture meaningful nearest neighbors of different modalities for cross-modal retrieval. To address the above problem, in this paper we propose an Unsupervised Generative Adversarial Cross-modal Hashing approach (UGACH), which makes full use of GANs ability for unsupervised representation learning to exploit the underlying manifold structure of cross-modal data. The main contributions can be summarized as follows: (1) We propose a generative adversarial network to model cross-modal hashing in an unsupervised fashion. In the proposed UGACH, given a data of one modality, the generative model tries to fit the distribution over the manifold structure, and select informative data of another modality to challenge the discriminative model. The discriminative model learns to distinguish the generated data and the true positive data sampled from correlation graph to achieve better retrieval accuracy. These two models are trained in an adversarial way to improve each other and promote hashing function learning. (2) We propose a correlation graph based approach to capture the underlying manifold structure across different modalities, so that data of different modalities but within the same manifold can have smaller Hamming distance and promote retrieval accuracy. Extensive experiments compared with 6 state-of-the-art methods verify the effectiveness of our proposed approach.
Combinatorial optimization (CO) has been a hot research topic because of its theoretic and practical importance. As a classic CO problem, deep hashing aims to find an optimal code for each data from finite discrete possibilities, while the discrete n ature brings a big challenge to the optimization process. Previous methods usually mitigate this challenge by binary approximation, substituting binary codes for real-values via activation functions or regularizations. However, such approximation leads to uncertainty between real-values and binary ones, degrading retrieval performance. In this paper, we propose a novel Deep Momentum Uncertainty Hashing (DMUH). It explicitly estimates the uncertainty during training and leverages the uncertainty information to guide the approximation process. Specifically, we model bit-level uncertainty via measuring the discrepancy between the output of a hashing network and that of a momentum-updated network. The discrepancy of each bit indicates the uncertainty of the hashing network to the approximate output of that bit. Meanwhile, the mean discrepancy of all bits in a hashing code can be regarded as image-level uncertainty. It embodies the uncertainty of the hashing network to the corresponding input image. The hashing bit and image with higher uncertainty are paid more attention during optimization. To the best of our knowledge, this is the first work to study the uncertainty in hashing bits. Extensive experiments are conducted on four datasets to verify the superiority of our method, including CIFAR-10, NUS-WIDE, MS-COCO, and a million-scale dataset Clothing1M. Our method achieves the best performance on all of the datasets and surpasses existing state-of-the-art methods by a large margin.
95 - Zhe Xu , Jiangpeng Yan , Jie Luo 2020
Multimodal image registration (MIR) is a fundamental procedure in many image-guided therapies. Recently, unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration. Howeve r, the estimated deformation fields of the existing methods fully rely on the to-be-registered image pair. It is difficult for the networks to be aware of the mismatched boundaries, resulting in unsatisfactory organ boundary alignment. In this paper, we propose a novel multimodal registration framework, which leverages the deformation fields estimated from both: (i) the original to-be-registered image pair, (ii) their corresponding gradient intensity maps, and adaptively fuses them with the proposed gated fusion module. With the help of auxiliary gradient-space guidance, the network can concentrate more on the spatial relationship of the organ boundary. Experimental results on two clinically acquired CT-MRI datasets demonstrate the effectiveness of our proposed approach.
Deep neural networks (DNNs) have achieved tremendous success in many tasks of machine learning, such as the image classification. Unfortunately, researchers have shown that DNNs are easily attacked by adversarial examples, slightly perturbed images w hich can mislead DNNs to give incorrect classification results. Such attack has seriously hampered the deployment of DNN systems in areas where security or safety requirements are strict, such as autonomous cars, face recognition, malware detection. Defensive distillation is a mechanism aimed at training a robust DNN which significantly reduces the effectiveness of adversarial examples generation. However, the state-of-the-art attack can be successful on distilled networks with 100% probability. But it is a white-box attack which needs to know the inner information of DNN. Whereas, the black-box scenario is more general. In this paper, we first propose the epsilon-neighborhood attack, which can fool the defensively distilled networks with 100% success rate in the white-box setting, and it is fast to generate adversarial examples with good visual quality. On the basis of this attack, we further propose the region-based attack against defensively distilled DNNs in the black-box setting. And we also perform the bypass attack to indirectly break the distillation defense as a complementary method. The experimental results show that our black-box attacks have a considerable success rate on defensively distilled networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا