ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) have achieved tremendous success in many tasks of machine learning, such as the image classification. Unfortunately, researchers have shown that DNNs are easily attacked by adversarial examples, slightly perturbed images which can mislead DNNs to give incorrect classification results. Such attack has seriously hampered the deployment of DNN systems in areas where security or safety requirements are strict, such as autonomous cars, face recognition, malware detection. Defensive distillation is a mechanism aimed at training a robust DNN which significantly reduces the effectiveness of adversarial examples generation. However, the state-of-the-art attack can be successful on distilled networks with 100% probability. But it is a white-box attack which needs to know the inner information of DNN. Whereas, the black-box scenario is more general. In this paper, we first propose the epsilon-neighborhood attack, which can fool the defensively distilled networks with 100% success rate in the white-box setting, and it is fast to generate adversarial examples with good visual quality. On the basis of this attack, we further propose the region-based attack against defensively distilled DNNs in the black-box setting. And we also perform the bypass attack to indirectly break the distillation defense as a complementary method. The experimental results show that our black-box attacks have a considerable success rate on defensively distilled networks.
Deep learning models have recently shown to be vulnerable to backdoor poisoning, an insidious attack where the victim model predicts clean images correctly but classifies the same images as the target class when a trigger poison pattern is added. Thi
We present a method for adversarial attack detection based on the inspection of a sparse set of neurons. We follow the hypothesis that adversarial attacks introduce imperceptible perturbations in the input and that these perturbations change the stat
Recent work has proposed the concept of backdoor attacks on deep neural networks (DNNs), where misbehaviors are hidden inside normal models, only to be triggered by very specific inputs. In practice, however, these attacks are difficult to perform an
Graph Neural Networks (GNNs) have achieved promising performance in various real-world applications. However, recent studies have shown that GNNs are vulnerable to adversarial attacks. In this paper, we study a recently-introduced realistic attack sc
The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, ofte