ترغب بنشر مسار تعليمي؟ اضغط هنا

DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs

61   0   0.0 ( 0 )
 نشر من قبل Erkun Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the high storage and search efficiency, hashing has become prevalent for large-scale similarity search. Particularly, deep hashing methods have greatly improved the search performance under supervised scenarios. In contrast, unsupervised deep hashing models can hardly achieve satisfactory performance due to the lack of reliable supervisory similarity signals. To address this issue, we propose a novel deep unsupervised hashing model, dubbed DistillHash, which can learn a distilled data set consisted of data pairs, which have confidence similarity signals. Specifically, we investigate the relationship between the initial noisy similarity signals learned from local structures and the semantic similarity labels assigned by a Bayes optimal classifier. We show that under a mild assumption, some data pairs, of which labels are consistent with those assigned by the Bayes optimal classifier, can be potentially distilled. Inspired by this fact, we design a simple yet effective strategy to distill data pairs automatically and further adopt a Bayesian learning framework to learn hash functions from the distilled data set. Extensive experimental results on three widely used benchmark datasets show that the proposed DistillHash consistently accomplishes the state-of-the-art search performance.

قيم البحث

اقرأ أيضاً

142 - Xiao Luo , Zeyu Ma , Daqing Wu 2021
Hashing has been widely used in approximate nearest neighbor search for its storage and computational efficiency. Deep supervised hashing methods are not widely used because of the lack of labeled data, especially when the domain is transferred. Mean while, unsupervised deep hashing models can hardly achieve satisfactory performance due to the lack of reliable similarity signals. To tackle this problem, we propose a novel deep unsupervised hashing method, namely Distilled Smooth Guidance (DSG), which can learn a distilled dataset consisting of similarity signals as well as smooth confidence signals. To be specific, we obtain the similarity confidence weights based on the initial noisy similarity signals learned from local structures and construct a priority loss function for smooth similarity-preserving learning. Besides, global information based on clustering is utilized to distill the image pairs by removing contradictory similarity signals. Extensive experiments on three widely used benchmark datasets show that the proposed DSG consistently outperforms the state-of-the-art search methods.
92 - Jian Zhang , Yuxin Peng , 2017
Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised met hods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra correlations, while ignoring the underlying manifold structure across different modalities, which is extremely helpful to capture meaningful nearest neighbors of different modalities for cross-modal retrieval. To address the above problem, in this paper we propose an Unsupervised Generative Adversarial Cross-modal Hashing approach (UGACH), which makes full use of GANs ability for unsupervised representation learning to exploit the underlying manifold structure of cross-modal data. The main contributions can be summarized as follows: (1) We propose a generative adversarial network to model cross-modal hashing in an unsupervised fashion. In the proposed UGACH, given a data of one modality, the generative model tries to fit the distribution over the manifold structure, and select informative data of another modality to challenge the discriminative model. The discriminative model learns to distinguish the generated data and the true positive data sampled from correlation graph to achieve better retrieval accuracy. These two models are trained in an adversarial way to improve each other and promote hashing function learning. (2) We propose a correlation graph based approach to capture the underlying manifold structure across different modalities, so that data of different modalities but within the same manifold can have smaller Hamming distance and promote retrieval accuracy. Extensive experiments compared with 6 state-of-the-art methods verify the effectiveness of our proposed approach.
Combinatorial optimization (CO) has been a hot research topic because of its theoretic and practical importance. As a classic CO problem, deep hashing aims to find an optimal code for each data from finite discrete possibilities, while the discrete n ature brings a big challenge to the optimization process. Previous methods usually mitigate this challenge by binary approximation, substituting binary codes for real-values via activation functions or regularizations. However, such approximation leads to uncertainty between real-values and binary ones, degrading retrieval performance. In this paper, we propose a novel Deep Momentum Uncertainty Hashing (DMUH). It explicitly estimates the uncertainty during training and leverages the uncertainty information to guide the approximation process. Specifically, we model bit-level uncertainty via measuring the discrepancy between the output of a hashing network and that of a momentum-updated network. The discrepancy of each bit indicates the uncertainty of the hashing network to the approximate output of that bit. Meanwhile, the mean discrepancy of all bits in a hashing code can be regarded as image-level uncertainty. It embodies the uncertainty of the hashing network to the corresponding input image. The hashing bit and image with higher uncertainty are paid more attention during optimization. To the best of our knowledge, this is the first work to study the uncertainty in hashing bits. Extensive experiments are conducted on four datasets to verify the superiority of our method, including CIFAR-10, NUS-WIDE, MS-COCO, and a million-scale dataset Clothing1M. Our method achieves the best performance on all of the datasets and surpasses existing state-of-the-art methods by a large margin.
We propose an unsupervised hashing method which aims to produce binary codes that preserve the ranking induced by a real-valued representation. Such compact hash codes enable the complete elimination of real-valued feature storage and allow for signi ficant reduction of the computation complexity and storage cost of large-scale image retrieval applications. Specifically, we learn a neural network-based model, which transforms the input representation into a binary representation. We formalize the training objective of the network in an intuitive and effective way, considering each training sample as a query and aiming to obtain the same retrieval results using the produced hash codes as those obtained with the original features. This training formulation directly optimizes the hashing model for the target usage of the hash codes it produces. We further explore the addition of a decoder trained to obtain an approximated reconstruction of the original features. At test time, we retrieved the most promising database samples with an efficient graph-based search procedure using only our hash codes and perform re-ranking using the reconstructed features, thus without needing to access the original features at all. Experiments conducted on multiple publicly available large-scale datasets show that our method consistently outperforms all compared state-of-the-art unsupervised hashing methods and that the reconstruction procedure can effectively boost the search accuracy with a minimal constant additional cost.
127 - Xiao Luo , Daqing Wu , Chong Chen 2020
Nearest neighbor search is to find the data points in the database such that the distances from them to the query are the smallest, which is a fundamental problem in various domains, such as computer vision, recommendation systems and machine learnin g. Hashing is one of the most widely used methods for its computational and storage efficiency. With the development of deep learning, deep hashing methods show more advantages than traditional methods. In this paper, we present a comprehensive survey of the deep hashing algorithms. Specifically, we categorize deep supervised hashing methods into pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, classification-oriented preserving as well as quantization according to the manners of preserving the similarities. In addition, we also introduce some other topics such as deep unsupervised hashing and multi-modal deep hashing methods. Meanwhile, we also present some commonly used public datasets and the scheme to measure the performance of deep hashing algorithms. Finally, we discussed some potential research directions in conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا