ﻻ يوجد ملخص باللغة العربية
We processed time series from seven Global Navigation Satellite System (GNSS) stations and one Very Long Baseline Interferometry (VLBI) station in Svalbard. The goal was to capture the seasonal vertical displacements caused by elastic response on variable mass load due to ice and snow accumulation. We found that estimates of the annual signal in different GNSS solutions disagree by more than 3 mm which makes geophysical interpretation of raw GNSS time series problematic. To overcome this problem, we have used an enhanced the Common Mode (CM) filtering technique. The time series are differentiated by the time series from remote station BJOS with known mass loading signals removed a priori. Using this technique, we have achieved a substantial reduction of the differences between the GNSS solutions. We have computed mass loading time series from a regional Climatic Mass Balance (CMB) and snow model that provides the amount of water equivalent at a 1 km resolution with a time step of 7 days. We found that the entire vertical loading signal is present in data of two totally independent techniques at a statistically significant level of 95%. This allowed us to conclude that the remaining errors in vertical signal derived from the CMB model are less than 0.2 mm at that significance level. Refining the land water storage loading model with a CMB model resulted in a reduction of the annual amplitude from 2.1 mm to 1.1 mm in the CM filtered time series, while it had only a marginal impact on raw time series. This provides a strong evidence that CM filtering is essential for revealing local periodic signals when a millimetre level of accuracy is required.
The Austre Lovenbreen is a 4.6 km2 glacier on the Archipelago of Svalbard (79 degrees N) that has been surveyed over the last 47 years in order of monitoring in particular the glacier evolution and associated hydrological phenomena in the context of
Lunar Laser Ranging (LLR) measures the distance between observatories on Earth and retro-reflectors on Moon since 1970. In this paper, we study the effect of non-tidal station loading (NTSL) in the analysis of LLR data. We add the non-tidal loading e
Many fast-flowing glaciers and ice streams move over beds consisting of reworked sediments and erosional products, commonly referred to as till. The complex interplay between ice, meltwater, and till at the subglacial bed connects several fundamental
We analyze data from four GPS campaigns carried out between 1997 and 2002 on a network of 11 sites in the Suez-Sinai, the area of collision between the African and the Arabian plates. This is the key area to understand how and in which way Sinai beha
A hanging glacier at the east face of Weisshorn broke off in 2005. We were able to monitor and measure surface motion and icequake activity for 21 days up to three days prior to the break-off. Results are presented from the analysis of seismic waves