ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical scaling of Loschmidt echo in non-Hermitian systems

122   0   0.0 ( 0 )
 نشر من قبل Gaoyong Sun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that non-Hermitian biorthogonal many-body phase transitions can be characterized by the enhanced decay of Loschmidt echo. The quantum criticality is numerically investigated in a non-Hermitian transverse field Ising model by performing the finite-size dynamical scaling of Loschmidt echo. We determine the equilibrium correlation length critical exponents that are consistent with previous results from the exact diagonalization. More importantly, we introduce a simple method to detect quantum phase transitions with the short-time average of rate function motivated by the critically enhanced decay behavior of Loschmidt echo. Our studies show how to detect equilibrium many-body phase transitions with biorthogonal Loschmidt echo that can be observed in future experiments via quantum dynamics after a quench.



قيم البحث

اقرأ أيضاً

We propose a method of computing and studying entanglement quantities in non-Hermitian systems by use of a biorthogonal basis. We find that the entanglement spectrum characterizes the topological properties in terms of the existence of mid-gap states in the non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry (PT symmetry) and the non-Hermitian Chern insulators. In addition, we find that at a critical point in the PT symmetric SSH model, the entanglement entropy has a logarithmic scaling with corresponding central charge $c=-2$. This critical point then is a free-fermion lattice realization of the non-unitary conformal field theory.
The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many body localized phase, which is characterized by emergent local integrals of motion, and provides a generic example of non-ergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo, and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a non-interacting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence, these probes allow to get insights into the relation between physical operators and local integrals of motion, and access the operator spreading in the many-body localized phase.
A paradigm model of modern atom optics is studied, strongly interacting ultracold bosons in an optical lattice. This many-body system can be artificially opened in a controlled manner by modern experimental techniques. We present results based on a n on-hermitian effective Hamiltonian whose quantum spectrum is analyzed. The direct access to the spectrum of the metastable many-body system allows us to easily identify relatively stable quantum states, corresponding to previously predicted solitonic many-body structures.
We investigate a model system for the injection of fermionic particles from filled source sites into an empty chain. We study the ensuing dynamics for Hermitian as well as for non-Hermitian time evolution where the particles cannot return to the bath sites (quantum ratchet). A non-homogeneous hybridization between bath and chain sites permits transient currents in the chain. Non-interacting particles show decoherence in the thermodynamic limit: the average particle number and the average current density in the chain become stationary for long times, whereas the single-particle density matrix displays large fluctuations around its mean value. Using the numerical time-dependent density-matrix renormalization group ($t$-DMRG) method we demonstrate, on the other hand, that sizable density-density interactions between the particles introduce relaxation which is by orders of magnitudes faster than the decoherence processes.
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from th e negative sign problem. We analyze the antiferromagnetic order and its suppression by the non-Hermiticity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا