ﻻ يوجد ملخص باللغة العربية
We study a simple lattice model with local symmetry, whose construction is based on a crossed module of finite groups. Its dynamical degrees of freedom are associated both to links and faces of a four-dimensional lattice. In special limits the discussed model reduces to certain known topological quantum field theories. In this work we focus on its dynamics, which we study both analytically and using Monte Carlo simulations. We prove a factorization theorem which reduces computation of correlation functions of local observables to known, simpler models. This, combined with standard Krammers-Wannier type dualities, allows us to propose a detailed phase diagram, which form is then confirmed in numerical simulations. We describe also topological charges present in the model, its symmetries and symmetry breaking patterns. The corresponding order parameters are the Polyakov loop and its generalization, which we call a Polyakov surface. The latter is particularly interesting, as it is beyond the scope of the factorization theorem. As shown by the numerical results, expectation value of Polyakov surface may serve to detects all phase transitions and is sensitive to a value of the topological charge.
Lattice gauge theory is an essential tool for strongly interacting non-Abelian fields, such as those in quantum chromodynamics where lattice results have been of central importance for several decades. Recent studies suggest that quantum computers co
We study the U(2) lattice gauge theory in the pure gauge sector using the simplest action, with determinant and fundamental terms, having the naive continuum limit of SU(2)$times$U(1). We determine part of the phase diagram of the model and find a fi
We explore a novel approach to compute the force between a static quark and a static antiquark with lattice gauge theory directly. The approach is based on expectation values of Wilson loops or Polyakov loops with chromoelectric field insertions. We
A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be impleme
An algorithm is proposed for the simulation of pure SU(N) lattice gauge theories based on Genetic Algorithms(GAs). We apply GAs to SU(2) pure gauge theory on a 2 dimensional lattice and show the results, the action per plaquette and Wilson loops, are