ترغب بنشر مسار تعليمي؟ اضغط هنا

On the U(2) Lattice Gauge Theory

64   0   0.0 ( 0 )
 نشر من قبل Claude Roiesnel
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English
 تأليف Claude Roiesnel




اسأل ChatGPT حول البحث

We study the U(2) lattice gauge theory in the pure gauge sector using the simplest action, with determinant and fundamental terms, having the naive continuum limit of SU(2)$times$U(1). We determine part of the phase diagram of the model and find a first-order critical line which goes through the U(1) critical point. We show how to deduce both the order parameter of the first-order transition and the U(2) renormalization group flow from the lattice potential in the determinant and fundamental representations. We give evidence that a Monte-Carlo simulation of the model is indeed consistent with the symmetric SU(2)$times$U(1) continuum limit in the weak coupling pertubative regime.



قيم البحث

اقرأ أيضاً

We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all values of the gauge coupling (with gauge symmetry restored). When probed with quenched staggered fermions with U(1) charge, the theory clearly has a chiral transition for large gauge couplings. We identify the only possible region in the parameter space where a continuum limit with nonperturbative physics may appear.
Lattice gauge theory is an essential tool for strongly interacting non-Abelian fields, such as those in quantum chromodynamics where lattice results have been of central importance for several decades. Recent studies suggest that quantum computers co uld extend the reach of lattice gauge theory in dramatic ways, but the usefulness of quantum annealing hardware for lattice gauge theory has not yet been explored. In this work, we implement SU(2) pure gauge theory on a quantum annealer for lattices comprising a few plaquettes in a row with a periodic boundary condition. These plaquettes are in two spatial dimensions and calculations use the Hamiltonian formulation where time is not discretized. Numerical results are obtained from calculations on D-Wave Advantage hardware for eigenvalues, eigenvectors, vacuum expectation values, and time evolution. The success of this initial exploration indicates that the quantum annealer might become a useful hardware platform for some aspects of lattice gauge theories.
A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be impleme nted with any number of qubits per gauge link, and a choice as small as two is shown to be useful. Real-time propagation and real-time collisions are observed on lattices in two spatial dimensions. The extension to three spatial dimensions is also developed, and a first look at 3-dimensional real-time dynamics is presented.
367 - A.Yamaguchi 1998
An algorithm is proposed for the simulation of pure SU(N) lattice gauge theories based on Genetic Algorithms(GAs). We apply GAs to SU(2) pure gauge theory on a 2 dimensional lattice and show the results, the action per plaquette and Wilson loops, are consistent with those by Metropolis method(MP)s and Heatbath method(HB)s. Thermalization speed of GAs is especially faster than the simple MPs.
103 - G. Damm , W. Kerler 1998
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis we find values of the critical exponent $ u$ close to, however, different from the Gaussian value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا