ﻻ يوجد ملخص باللغة العربية
A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be implemented with any number of qubits per gauge link, and a choice as small as two is shown to be useful. Real-time propagation and real-time collisions are observed on lattices in two spatial dimensions. The extension to three spatial dimensions is also developed, and a first look at 3-dimensional real-time dynamics is presented.
We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the ex
We study the U(2) lattice gauge theory in the pure gauge sector using the simplest action, with determinant and fundamental terms, having the naive continuum limit of SU(2)$times$U(1). We determine part of the phase diagram of the model and find a fi