ﻻ يوجد ملخص باللغة العربية
We consider estimation and control of the cylinder wake at low Reynolds numbers. A particular focus is on the development of efficient numerical algorithms to design optimal linear feedback controllers when there are many inputs (disturbances applied everywhere) and many outputs (perturbations measured everywhere). We propose a resolvent-based iterative algorithm to perform i) optimal estimation of the flow using a limited number of sensors; and ii) optimal control of the flow when the entire flow is known but only a limited number of actuators are available for control. The method uses resolvent analysis to take advantage of the low-rank characteristics of the cylinder wake and solutions are obtained without any model-order reduction. Optimal feedback controllers are also obtained by combining the solutions of the estimation and control problems. We show that the performance of the estimators and controllers converges to the true global optima, indicating that the important physical mechanisms for estimation and control are of low rank.
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of o
Reduced Order Modeling (ROM) for engineering applications has been a major research focus in the past few decades due to the unprecedented physical insight into turbulence offered by high-fidelity CFD. The primary goal of a ROM is to model the key ph
The problem of controlling and stabilising solutions to the Kuramoto-Sivashinsky equation is studied in this paper. We consider a generalised form of the equation in which the effects of an electric field and dispersion are included. Both the feedbac
Gradient-free optimization methods, such as surrogate based optimization (SBO) methods, and genetic (GAs), or evolutionary (EAs) algorithms have gained popularity in the field of constrained optimization of expensive black-box functions. However, con
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic outpu