ﻻ يوجد ملخص باللغة العربية
The problem of controlling and stabilising solutions to the Kuramoto-Sivashinsky equation is studied in this paper. We consider a generalised form of the equation in which the effects of an electric field and dispersion are included. Both the feedback and optimal control problems are studied. We prove that we can control arbitrary nontrivial steady states of the Kuramoto-Sivashinsky equation, including travelling wave solutions, using a finite number of point actuators. The number of point actuators needed is related to the number of unstable modes of the equation. Furthermore, the proposed control methodology is shown to be robust with respect to changing the parameters in the equation, e.g. the viscosity coefficient or the intensity of the electric field. We also study the problem of controlling solutions of coupled systems of Kuramoto-Sivashinsky equations. Possible applications to controlling thin film flows are discussed. Our rigorous results are supported by extensive numerical simulations.
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydro
We consider estimation and control of the cylinder wake at low Reynolds numbers. A particular focus is on the development of efficient numerical algorithms to design optimal linear feedback controllers when there are many inputs (disturbances applied
We present a novel control methodology to control the roughening processes of semilinear parabolic stochastic partial differential equations in one dimension, which we exemplify with the stochastic Kuramoto-Sivashinsky equation. The original equation
In this paper, we investigate how the self-synchronization property of a swarm of Kuramoto oscillators can be controlled and exploited to achieve target densities and target phase coherence. In the limit of an infinite number of oscillators, the coll
We develop an algorithm for the concurrent (on-the-fly) estimation of parameters for a system of evolutionary dissipative partial differential equations in which the state is partially observed. The intuitive nature of the algorithm makes its extensi