ﻻ يوجد ملخص باللغة العربية
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic output feedback protocols that guarantee the associated cost to be smaller than an a priori given upper bound while synchronizing the controlled network. A design method is provided to compute such protocols. The computation of the two local gains in these protocols involves two Riccati inequalities, each of dimension equal to the dimension of the state space of the agents. The largest and smallest nonzero eigenvalue of the Laplacian matrix of the network graph are also used in the computation of one of the two local gains.A simulation example is provided to illustrate the performance of the proposed protocols.
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide
This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system
In this paper, we extend the results from Jiao et al. (2019) on distributed linear quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic tracking control for leader-follower multi-agent systems. Given one au
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear ma
Distributed linear control design is crucial for large-scale cyber-physical systems. It is generally desirable to both impose information exchange (communication) constraints on the distributed controller, and to limit the propagation of disturbances