ترغب بنشر مسار تعليمي؟ اضغط هنا

Sums of Separable and Quadratic Polynomials

135   0   0.0 ( 0 )
 نشر من قبل Cemil Dibek
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study separable plus quadratic (SPQ) polynomials, i.e., polynomials that are the sum of univariate polynomials in different variables and a quadratic polynomial. Motivated by the fact that nonnegative separable and nonnegative quadratic polynomials are sums of squares, we study whether nonnegative SPQ polynomials are (i) the sum of a nonnegative separable and a nonnegative quadratic polynomial, and (ii) a sum of squares. We establish that the answer to question (i) is positive for univariate plus quadratic polynomials and for convex SPQ polynomials, but negative already for bivariate quartic SPQ polynomials. We use our decomposition result for convex SPQ polynomials to show that convex SPQ polynomial optimization problems can be solved by small semidefinite programs. For question (ii), we provide a complete characterization of the answer based on the degree and the number of variables of the SPQ polynomial. We also prove that testing nonnegativity of SPQ polynomials is NP-hard when the degree is at least four. We end by presenting applications of SPQ polynomials to upper bounding sparsity of solutions to linear programs, polynomial regression problems in statistics, and a generalization of Newtons method which incorporates separable higher-order derivative information.



قيم البحث

اقرأ أيضاً

144 - Jianquan Ge , Zizhou Tang 2018
The Hilberts 17th problem asks that whether every nonnegative polynomial can be a sum of squares of rational functions. It has been answered affirmatively by Artin. However, as to the question whether a given nonnegative polynomial is a sum of square s of polynomials is still a central question in real algebraic geometry. In this paper, we solve this question completely for the nonnegative polynomials associated with isoparametric polynomials (initiated by E. Cartan) which define the focal submanifolds of the corresponding isoparametric hypersurfaces.
We consider a class of sequential decision-making problems under uncertainty that can encompass various types of supervised learning concepts. These problems have a completely observed state process and a partially observed modulation process, where the state process is affected by the modulation process only through an observation process, the observation process only observes the modulation process, and the modulation process is exogenous to control. We model this broad class of problems as a partially observed Markov decision process (POMDP). The belief function for the modulation process is control invariant, thus separating the estimation of the modulation process from the control of the state process. We call this specially structured POMDP the separable POMDP, or SEP-POMDP, and show it (i) can serve as a model for a broad class of application areas, e.g., inventory control, finance, healthcare systems, (ii) inherits value function and optimal policy structure from a set of completely observed MDPs, (iii) can serve as a bridge between classical models of sequential decision making under uncertainty having fully specified model artifacts and such models that are not fully specified and require the use of predictive methods from statistics and machine learning, and (iv) allows for specialized approximate solution procedures.
In this work, we consider the problem of blind source separation (BSS) by departing from the usual linear model and focusing on the linear-quadratic (LQ) model. We propose two provably robust and computationally tractable algorithms to tackle this pr oblem under separability assumptions which require the sources to appear as samples in the data set. The first algorithm generalizes the successive nonnegative projection algorithm (SNPA), designed for linear BSS, and is referred to as SNPALQ. By explicitly modeling the product terms inherent to the LQ model along the iterations of the SNPA scheme, the nonlinear contributions of the mixing are mitigated, thus improving the separation quality. SNPALQ is shown to be able to recover the ground truth factors that generated the data, even in the presence of noise. The second algorithm is a brute-force (BF) algorithm, which is used as a post-processing step for SNPALQ. It enables to discard the spurious (mixed) samples extracted by SNPALQ, thus broadening its applicability. The BF is in turn shown to be robust to noise under easier-to-check and milder conditions than SNPALQ. We show that SNPALQ with and without the BF postprocessing is relevant in realistic numerical experiments.
In this work, we propose a robust approach to design distributed controllers for unknown-but-sparse linear and time-invariant systems. By leveraging modern techniques in distributed controller synthesis and structured linear inverse problems as appli ed to system identification, we show that near-optimal distributed controllers can be learned with sub-linear sample complexity and computed with near-linear time complexity, both measured with respect to the dimension of the system. In particular, we provide sharp end-to-end guarantees on the stability and the performance of the designed distributed controller and prove that for sparse systems, the number of samples needed to guarantee robust and near optimal performance of the designed controller can be significantly smaller than the dimension of the system. Finally, we show that the proposed optimization problem can be solved to global optimality with near-linear time complexity by iteratively solving a series of small quadratic programs.
61 - Shi Yu 2020
When applying eigenvalue decomposition on the quadratic term matrix in a type of linear equally constrained quadratic programming (EQP), there exists a linear mapping to project optimal solutions between the new EQP formulation where $Q$ is diagonali zed and the original formulation. Although such a mapping requires a particular type of equality constraints, it is generalizable to some real problems such as efficient frontier for portfolio allocation and classification of Least Square Support Vector Machines (LSSVM). The established mapping could be potentially useful to explore optimal solutions in subspace, but it is not very clear to the author. This work was inspired by similar work proved on unconstrained formulation discussed earlier in cite{Tan}, but its current proof is much improved and generalized. To the authors knowledge, very few similar discussion appears in literature.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا