ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Stochastic Optimization in Separable Learning Environments

64   0   0.0 ( 0 )
 نشر من قبل Reid Bishop
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a class of sequential decision-making problems under uncertainty that can encompass various types of supervised learning concepts. These problems have a completely observed state process and a partially observed modulation process, where the state process is affected by the modulation process only through an observation process, the observation process only observes the modulation process, and the modulation process is exogenous to control. We model this broad class of problems as a partially observed Markov decision process (POMDP). The belief function for the modulation process is control invariant, thus separating the estimation of the modulation process from the control of the state process. We call this specially structured POMDP the separable POMDP, or SEP-POMDP, and show it (i) can serve as a model for a broad class of application areas, e.g., inventory control, finance, healthcare systems, (ii) inherits value function and optimal policy structure from a set of completely observed MDPs, (iii) can serve as a bridge between classical models of sequential decision making under uncertainty having fully specified model artifacts and such models that are not fully specified and require the use of predictive methods from statistics and machine learning, and (iv) allows for specialized approximate solution procedures.



قيم البحث

اقرأ أيضاً

148 - Yifan Hu , Siqi Zhang , Xin Chen 2020
Conditional Stochastic Optimization (CSO) covers a variety of applications ranging from meta-learning and causal inference to invariant learning. However, constructing unbiased gradient estimates in CSO is challenging due to the composition structure . As an alternative, we propose a biased stochastic gradient descent (BSGD) algorithm and study the bias-variance tradeoff under different structural assumptions. We establish the sample complexities of BSGD for strongly convex, convex, and weakly convex objectives, under smooth and non-smooth conditions. We also provide matching lower bounds of BSGD for convex CSO objectives. Extensive numerical experiments are conducted to illustrate the performance of BSGD on robust logistic regression, model-agnostic meta-learning (MAML), and instrumental variable regression (IV).
An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-ADMM) scheme is developed for solving structured separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmoo th convex function and a smooth function which is an average of many component convex functions. Problems having this structure often arise in machine learning and data mining applications. AS-ADMM combines the ideas of both ADMM and the stochastic gradient methods using variance reduction techniques. One of the ADMM subproblems employs a linearization technique while a similar linearization could be introduced for the other subproblem. For a specified choice of the algorithm parameters, it is shown that the objective error and the constraint violation are $mathcal{O}(1/k)$ relative to the number of outer iterations $k$. Under a strong convexity assumption, the expected iterate error converges to zero linearly. A linearized variant of AS-ADMM and incremental sampling strategies are also discussed. Numerical experiments with both stochastic and deterministic ADMM algorithms show that AS-ADMM can be particularly effective for structured optimization arising in big data applications.
Stochastic bilevel optimization generalizes the classic stochastic optimization from the minimization of a single objective to the minimization of an objective function that depends the solution of another optimization problem. Recently, stochastic b ilevel optimization is regaining popularity in emerging machine learning applications such as hyper-parameter optimization and model-agnostic meta learning. To solve this class of stochastic optimization problems, existing methods require either double-loop or two-timescale updates, which are sometimes less efficient. This paper develops a new optimization method for a class of stochastic bilevel problems that we term Single-Timescale stochAstic BiLevEl optimization (STABLE) method. STABLE runs in a single loop fashion, and uses a single-timescale update with a fixed batch size. To achieve an $epsilon$-stationary point of the bilevel problem, STABLE requires ${cal O}(epsilon^{-2})$ samples in total; and to achieve an $epsilon$-optimal solution in the strongly convex case, STABLE requires ${cal O}(epsilon^{-1})$ samples. To the best of our knowledge, this is the first bilevel optimization algorithm achieving the same order of sample complexity as the stochastic gradient descent method for the single-level stochastic optimization.
Standard results in stochastic convex optimization bound the number of samples that an algorithm needs to generate a point with small function value in expectation. More nuanced high probability guarantees are rare, and typically either rely on light -tail noise assumptions or exhibit worse sample complexity. In this work, we show that a wide class of stochastic optimization algorithms for strongly convex problems can be augmented with high confidence bounds at an overhead cost that is only logarithmic in the confidence level and polylogarithmic in the condition number. The procedure we propose, called proxBoost, is elementary and builds on two well-known ingredients: robust distance estimation and the proximal point method. We discuss consequences for both streaming (online) algorithms and offline algorithms based on empirical risk minimization.
In this paper, we introduce various mechanisms to obtain accelerated first-order stochastic optimization algorithms when the objective function is convex or strongly convex. Specifically, we extend the Catalyst approach originally designed for determ inistic objectives to the stochastic setting. Given an optimization method with mild convergence guarantees for strongly convex problems, the challenge is to accelerate convergence to a noise-dominated region, and then achieve convergence with an optimal worst-case complexity depending on the noise variance of the gradients. A side contribution of our work is also a generic analysis that can handle inexact proximal operators, providing new insights about the robustness of stochastic algorithms when the proximal operator cannot be exactly computed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا