ترغب بنشر مسار تعليمي؟ اضغط هنا

d=3 random field behavior near percolation

63   0   0.0 ( 0 )
 نشر من قبل David P. Belanger
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering for H>0. A low-temperature (T<11K), low-field (H<1T) pseudophase transition boundary separates a partially antiferromagnetically ordered phase from the paramagnetic one. For 1<H<7T at low temperatures, a region of antiferromagnetic order is field induced but is not enclosed within a transition boundary.



قيم البحث

اقرأ أيضاً

Motivated by recent experimental observations [Phys. Rev. 96, 020407 (2017)] on hexagonal ferrites, we revisit the phase diagrams of diluted magnets close to the lattice percolation threshold. We perform large-scale Monte Carlo simulations of XY and Heisenberg models on both simple cubic lattices and lattices representing the crystal structure of the hexagonal ferrites. Close to the percolation threshold $p_c$, we find that the magnetic ordering temperature $T_c$ depends on the dilution $p$ via the power law $T_c sim |p-p_c|^phi$ with exponent $phi=1.09$, in agreement with classical percolation theory. However, this asymptotic critical region is very narrow, $|p-p_c| lesssim 0.04$. Outside of it, the shape of the phase boundary is well described, over a wide range of dilutions, by a nonuniversal power law with an exponent somewhat below unity. Nonetheless, the percolation scenario does not reproduce the experimentally observed relation $T_c sim (x_c -x)^{2/3}$ in PbFe$_{12-x}$Ga$_x$O$_{19}$. We discuss the generality of our findings as well as implications for the physics of diluted hexagonal ferrites.
The random Lorentz gas (RLG) is a minimal model for transport in disordered media. Despite the broad relevance of the model, theoretical grasp over its properties remains weak. For instance, the scaling with dimension d of its localization transition at the void percolation threshold is not well controlled analytically nor computationally. A recent study [Biroli et al. Phys. Rev. E L030104 (2021)] of the caging behavior of the RLG motivated by the mean-field theory of glasses has uncovered physical inconsistencies in that scaling that heighten the need for guidance. Here, we first extend analytical expectations for asymptotic high-d bounds on the void percolation threshold, and then computationally evaluate both the threshold and its criticality in various d. In high-d systems, we observe that the standard percolation physics is complemented by a dynamical slowdown of the tracer dynamics reminiscent of mean-field caging. A simple modification of the RLG is found to bring the interplay between percolation and mean-field-like caging down to d=3.
117 - Z. Slanic , D. P. Belanger 1997
The specific heat critical behavior is measured and analyzed for a single crystal of the random-field Ising system Fe(0.93)Zn(0.07)F2 using pulsed heat and optical birefringence techniques. This high magnetic concentration sample does not exhibit the severe scattering hysteresis at low temperature seen in lower concentration samples and its behavior is therefore that of an equilibrium random-field Ising model system. The equivalence of the behavior observed with pulsed heat techniques and optical birefringence is established. The critical peak appears to be a symmetric, logarithmic divergence, in disagreement with random-field model computer simulations. The random-field specific heat scaling function is determined.
61 - F. Ye , L. Zhou , S. A. Meyer 2006
The critical exponent beta =0.17(1) for the three-dimensional random-field Ising model (RFIM) order parameter upon zero-field cooling (ZFC) has been determined using extinction-free magnetic x-ray scattering techniques for Fe(0.85)Zn(0.15)F2. This re sult is consistent with other exponents determined for the RFIM in that Rushbrooke scaling is satisfied. Nevertheless, there is poor agreement with equilibrium computer simulations, and the ZFC results do not agree with field-cooling (FC) results. We present details of hysteresis in Bragg scattering amplitudes and line shapes that help elucidate the effects of thermal cycling in the RFIM, as realized in dilute antiferromagnets in an applied field. We show that the ZFC critical-like behavior is consistent with a second-order phase transitions, albeit quasi-stationary rather than truly equilibrium in nature, as evident from the large thermal hysteresis observed near the transition.
We study spin glass behavior in a random Ising Coulomb antiferromagnet in two and three dimensions using Monte Carlo simulations. In two dimensions, we find a transition at zero temperature with critical exponents consistent with those of the Edwards Anderson model, though with large uncertainties. In three dimensions, evidence for a finite-temperature transition, as occurs in the Edwards-Anderson model, is rather weak. This may indicate that the sizes are too small to probe the asymptotic critical behavior, or possibly that the universality class is different from that of the Edwards-Anderson model and has a lower critical dimension equal to three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا