ترغب بنشر مسار تعليمي؟ اضغط هنا

Eclipsing Systems with Pulsating Components (Types {beta} Cep, {delta} Sct, {gamma} Dor or Red Giant) in the Era of High-Accuracy Space Data

132   0   0.0 ( 0 )
 نشر من قبل Patricia Lampens Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Patricia Lampens




اسأل ChatGPT حول البحث

Eclipsing systems are essential objects for understanding the properties of stars and stellar systems. Eclipsing systems with pulsating components are furthermore advantageous because they provide accurate constraints on the component properties, as well as a complementary method for pulsation mode determination, crucial for precise asteroseismology. The outcome of space missions aiming at delivering high-accuracy light curves for many thousands of stars in search of planetary systems has also generated new insights in the field of variable stars and revived the interest of binary systems in general. The detection of eclipsing systems with pulsating components has particularly benefitted from this, and progress in this field is growing fast. In this review, we showcase some of the recent results obtained from studies of eclipsing systems with pulsating components based on data acquired by the space missions {it Kepler} or TESS. We consider different system configurations including semi-detached eclipsing binaries in (near-)circular orbits, a (near-)circular and non-synchronized eclipsing binary with a chemically peculiar component, eclipsing binaries showing the heartbeat phenomenon, as well as detached, eccentric double-lined systems. All display one or more pulsating component(s). Among the great variety of known classes of pulsating stars, we discuss unevolved or slightly evolved pulsators of spectral type B, A or F and red giants with solar-like oscillations. Some systems exhibit additional phenomena such as tidal effects, angular momentum transfer, (occasional) mass transfer between the components and/or magnetic activity. How these phenomena and the orbital changes affect the different types of pulsations excited in one or more components, offers a new window of opportunity to better understand the physics of pulsations.



قيم البحث

اقرأ أيضاً

209 - M. Hareter , P. Reegen , A. Miglio 2010
A systematic search for gamma Dor and gamma Dor - delta Scuti hybrid pulsators was conducted on the CoRoT LRa01 Exo-archive yielding a total of 418 gamma Dor and 274 hybrid candidates. After an automatic jump correction 194 and 167 respectively, show no more obvious jumps and were investigated in more detail. For about 25% of these candidates classification spectra from the Anglo-Australian Observatory (AAO) are available. The detailed frequency analysis and a check for combination frequencies together with spectroscopic information allowed us to identify I) 34 gamma Dor stars which show very different pulsation spectra where mostly two modes dominate. Furthermore, a search for regularities in their oscillation spectra allowed to derive recurrent period spacings for 5 of these gamma Dor stars. II) 25 clear hybrid pulsators showing frequencies in the gamma Dor and delta Sct domain and are of A-F spectral type.
In our 2013 Astronomical Review article, we discussed the statistics of variability for 633 faint spectral type A-F stars observed by the Kepler spacecraft during Quarters 6-13. We found six stars that showed no variability with amplitude 20 ppm or g reater in the range 0.2 to 24.4 cycles/day, but whose positions in the log g--Teff diagram place them in the delta Sct or gamma Dor pulsation instability regions established from pre-Kepler ground-based observations. Here we present results for 2137 additional stars observed during Quarters 14-17, and find 34 stars that lie within the instability regions. In Paper I, we included a +229 K offset to the Kepler Input Catalog Teff to take into account an average systematic difference between the KIC values and the Teff derived from SDSS color photometry for main-sequence F stars (Pinsonneault et al. 2012). Here we compare the KIC Teff value and the Teff derived from spectroscopy taken by the LAMOST instrument (Molenda-Zakowicz et al. 2013, 2014) for 54 stars common to both samples. We find no trend to support applying the offset, but instead find that a small average temperature decrease relative to the KIC Teff may be more appropriate for the stars in our spectral-type range. If the offset is omitted, only 17 of our 34 `constant stars fall within the instability regions. For the two `constant stars also observed by LAMOST, the LAMOST Teff values are cooler than the KIC Teff by several hundred K, and would move these stars out of the instability regions. It is possible that a more accurate determination of their Teff and log g would move some of the other `constant stars out of the instability regions. However, if average (random) errors in Teff are taken into account, 15 to 52 stars may still persist within the instability regions. Explanations for these `constant stars, both theoretical and observational, remain to be investigated.
We present the preliminary results of the study of an interesting target in the first CoRoT exo-planet field (IRa1): CoRoT 102918586. Its light curve presents additional variability on the top of the eclipses, whose pattern suggests multi- frequency pulsations. The high accuracy CoRoT light curve was analyzed by applying an iterative scheme, devised to disentangle the effect of eclipses from the oscillatory pattern. In addition to the CoRoT photometry we obtained low resolution spectroscopy with the AAOmega multi-fiber facility at the Anglo Australian Observatory, which yielded a spectral classification as F0 V and allowed us to infer a value of the primary star effective temperature. The Fourier analysis of the residuals, after subtraction of the binary light curve, gave 35 clear frequencies. The highest amplitude frequency, of 1.22 c/d, is in the expected range for both gamma Dor and SPB pulsators, but the spectral classification favors the first hypothesis. Apart from a few multiples of the orbital period, most frequencies can be interpreted as rotational splitting of the main frequency (an l = 2 mode) and of its overtones.
Delta Scuti ($delta$ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modelling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a $delta$ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for $delta$ Sct stars.
259 - P. G. Beck , K. Hambleton , J. Vos 2013
The unparalleled photometric data obtained by NASAs Kepler space telescope led to an improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccent ric non-eclipsing binaries, exhibiting ellipsoidal modulations, have been detected with Kepler. We aim to study the properties of eccentric binary systems containing a red giant star and derive the parameters of the primary giant component. We apply asteroseismic techniques to determine masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques are applied to extract the parameters of the system. The effects of stellar on the binary system are studied. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440days. From radial velocity measurements we find eccentricities between e=0.2 to 0.76. As a case study we present a detailed analysis of KIC5006817. From seismology we constrain the rotational period of the envelope to be at least 165 d, roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300ppm in the light curve. Through binary modelling, we determine the mass of the secondary component to be 0.29$pm$0.03,$M_odot$. For KIC5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2$sigma$ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا