ترغب بنشر مسار تعليمي؟ اضغط هنا

Eclipsing binaries with pulsating components: CoRoT 102918586

232   0   0.0 ( 0 )
 نشر من قبل Carla Maceroni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the preliminary results of the study of an interesting target in the first CoRoT exo-planet field (IRa1): CoRoT 102918586. Its light curve presents additional variability on the top of the eclipses, whose pattern suggests multi- frequency pulsations. The high accuracy CoRoT light curve was analyzed by applying an iterative scheme, devised to disentangle the effect of eclipses from the oscillatory pattern. In addition to the CoRoT photometry we obtained low resolution spectroscopy with the AAOmega multi-fiber facility at the Anglo Australian Observatory, which yielded a spectral classification as F0 V and allowed us to infer a value of the primary star effective temperature. The Fourier analysis of the residuals, after subtraction of the binary light curve, gave 35 clear frequencies. The highest amplitude frequency, of 1.22 c/d, is in the expected range for both gamma Dor and SPB pulsators, but the spectral classification favors the first hypothesis. Apart from a few multiples of the orbital period, most frequencies can be interpreted as rotational splitting of the main frequency (an l = 2 mode) and of its overtones.



قيم البحث

اقرأ أيضاً

Pulsating stars in eclipsing binary systems are powerful tools to test stellar models. Binarity enables to constrain the pulsating component physical parameters, whose knowledge drastically improves the input physics for asteroseismic studies. The st udy of stellar oscillations allows us, in its turn, to improve our understanding of stellar interiors and evolution. The space mission CoRoT discovered several promising objects suitable for these studies, which have been photometrically observed with unprecedented accuracy, but needed spectroscopic follow-up. A promising target was the relatively bright eclipsing system CoRoT 102918586, which turned out to be a double-lined spectroscopic binary and showed, as well, clear evidence of Gamma Dor type pulsations. We obtained phase resolved high-resolution spectroscopy with the Sandiford spectrograph at the McDonald 2.1m telescope and the FEROS spectrograph at the ESO 2.2m telescope. Spectroscopy yielded both the radial velocity curves and, after spectra disentangling, the component effective temperatures, metallicity and line-of-sight projected rotational velocities. The CoRoT light curve was analyzed with an iterative procedure, devised to disentangle eclipses from pulsations. We obtained an accurate determination of the system parameters, and by comparison with evolutionary models strict constraints on the system age. Finally, the residuals obtained after subtraction of the best fitting eclipsing binary model were analyzed to determine the pulsator properties. We achieved a quite complete and consistent description of the system. The primary star pulsates with typical {gamma} Dor frequencies and shows a splitting in period which is consistent with high order g-mode pulsations in a star of the corresponding physical parameters. The value of the splitting, in particular, is consistent with pulsations in l = 1 modes.
We report the discovery of CoRoT 102980178 (R.A.= 06:50:12.10, Dec.= -02:41:21.8, J2000) an Algol-type eclipsing binary system with a pulsating component (oEA). It was identified using a publicly available 55 day long monochromatic lightcurve from th e CoRoT initial run dataset (exoplanet field). Eleven consecutive 1.26m deep total primary and the equal number of 0.25m deep secondary eclipses (at phase 0.50) were observed. The following light elements for the primary eclipse were derived: HJD_MinI= 2454139.0680 + 5.0548d x E. The lightcurve modeling leads to a semidetached configuration with the photometric mass ratio q=0.2 and orbital inclination i=85 deg. The out-of-eclipse lightcurve shows ellipsoidal variability and positive OConnell effect as well as clear 0.01m pulsations with the dominating frequency of 2.75 c/d. The pulsations disappear during the primary eclipses, which indicates the primary (more massive) component to be the pulsating star. Careful frequency analysis reveals the second independent pulsation frequency of 0.21 c/d and numerous combinations of these frequencies with the binary orbital frequency and its harmonics. On the basis of the CoRoT lightcurve and ground based multicolor photometry, we favor classification of the pulsating component as a gamma Doradus type variable, however, classification as an SPB star cannot be excluded.
We present an overview of pulsating stars in close binaries, focusing on the question what role the dupliticity plays in triggering and/or modifying stellar oscillations and on how it can help us to interpret the oscillatory behaviour of (one of) the components. We give examples of characteristic types of oscillations observed in binaries: forced oscillations and free oscillations in both, short- and long-period binaries. The importance of studies of oscillations in eclipsing binaries is also pointed out. A list of line-profile and rapid light variables in close binaries with their basic properties is provided. No obvious relations among the orbital eccentricity, orbital frequency, rotational frequency and intrinsic frequencies of oscillations were found. The value and future prospects of asteroseismic studies of binary stars are briefly outlined while the complexity of the problem and its possible complications are also discussed.
We present the search for eclipsing binaries with a pulsating component in the first catalogue of optically variable sources observed by OMC/INTEGRAL, which contains photometric data for more than 1000 eclipsing binaries. Five objects were found and a detailed analysis of one of them, DY Aqr, has been performed. Photometric and spectroscopic observations of DY Aqr were obtained to analyse the binary system and the pulsational characteristics of the primary component. By applying the binary modelling software phoebe to the OMC and ground-based photometric light curves, and to the radial velocity curve obtained using echelle high-resolution spectroscopy, the physical parameters of the system have been determined. Frequency analysis of the residual data has been performed using Fourier techniques to identify pulsational frequencies. We have built a grid of theoretical models to classify spectroscopically the primary component as an A7.5V star (plus or minus one spectral subtype). The best orbital fit was obtained for a semi-detached system configuration. According to the binary modelling, the primary component has Teff = 7625+-125 K and log g = 4.1+-0.1 and the secondary component has Teff = 3800+-200 K and log g = 3.3+-0.1, although it is too faint to isolate its spectral features. From the analysis of the residuals we have found a main pulsation frequency at 23.37 c/d, which is typical of a delta Scuti star. In the O-C diagram no evidence of orbital period changes over the last 8 years has been found.
120 - D. R. Gies , R. A. Matson , Z. Guo 2015
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclips ing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا