ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma Dor and Gamma Dor - Delta Sct Hybrid Stars In The CoRoT LRa01

162   0   0.0 ( 0 )
 نشر من قبل Markus Hareter
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A systematic search for gamma Dor and gamma Dor - delta Scuti hybrid pulsators was conducted on the CoRoT LRa01 Exo-archive yielding a total of 418 gamma Dor and 274 hybrid candidates. After an automatic jump correction 194 and 167 respectively, show no more obvious jumps and were investigated in more detail. For about 25% of these candidates classification spectra from the Anglo-Australian Observatory (AAO) are available. The detailed frequency analysis and a check for combination frequencies together with spectroscopic information allowed us to identify I) 34 gamma Dor stars which show very different pulsation spectra where mostly two modes dominate. Furthermore, a search for regularities in their oscillation spectra allowed to derive recurrent period spacings for 5 of these gamma Dor stars. II) 25 clear hybrid pulsators showing frequencies in the gamma Dor and delta Sct domain and are of A-F spectral type.

قيم البحث

اقرأ أيضاً

In our 2013 Astronomical Review article, we discussed the statistics of variability for 633 faint spectral type A-F stars observed by the Kepler spacecraft during Quarters 6-13. We found six stars that showed no variability with amplitude 20 ppm or g reater in the range 0.2 to 24.4 cycles/day, but whose positions in the log g--Teff diagram place them in the delta Sct or gamma Dor pulsation instability regions established from pre-Kepler ground-based observations. Here we present results for 2137 additional stars observed during Quarters 14-17, and find 34 stars that lie within the instability regions. In Paper I, we included a +229 K offset to the Kepler Input Catalog Teff to take into account an average systematic difference between the KIC values and the Teff derived from SDSS color photometry for main-sequence F stars (Pinsonneault et al. 2012). Here we compare the KIC Teff value and the Teff derived from spectroscopy taken by the LAMOST instrument (Molenda-Zakowicz et al. 2013, 2014) for 54 stars common to both samples. We find no trend to support applying the offset, but instead find that a small average temperature decrease relative to the KIC Teff may be more appropriate for the stars in our spectral-type range. If the offset is omitted, only 17 of our 34 `constant stars fall within the instability regions. For the two `constant stars also observed by LAMOST, the LAMOST Teff values are cooler than the KIC Teff by several hundred K, and would move these stars out of the instability regions. It is possible that a more accurate determination of their Teff and log g would move some of the other `constant stars out of the instability regions. However, if average (random) errors in Teff are taken into account, 15 to 52 stars may still persist within the instability regions. Explanations for these `constant stars, both theoretical and observational, remain to be investigated.
We present the preliminary results of a frequency and line-profile analysis of the CoRoT gamma Dor candidate HD171834. The data consist of 149 days of CoRoT light curves and a ground-based dataset of more than 1400 high-resolution spectra, obtained w ith six different instruments. Low-amplitude frequencies between 0 and 5 c/d, dominated by a frequency near 0.96 c/d and several of its harmonics, are detected. These findings suggest that HD171834 is not a mere gamma Dor pulsator and that stellar activity plays an important role in its variable behaviour. Based on CoRoT space data and on ground-based observations with ESO Telescopes at the La Silla Observatory under the ESO Large Programmes ESO LP 178.D-0361 and ESO LP 182.D-0356 (FEROS/2.2m and HARPS/3.6m), and data collected with FOCES/2.2m at the Centro Astronomico Hispano Aleman at Calar Alto, SOPHIE/1.93m at Observatoire de Haute Provence, FIES/NOT at Observatorio del Roque de los Muchachos, and HERCULES/1.0m at Mount John University Observatory.
Pulsating stars in eclipsing binary systems are powerful tools to test stellar models. Binarity enables to constrain the pulsating component physical parameters, whose knowledge drastically improves the input physics for asteroseismic studies. The st udy of stellar oscillations allows us, in its turn, to improve our understanding of stellar interiors and evolution. The space mission CoRoT discovered several promising objects suitable for these studies, which have been photometrically observed with unprecedented accuracy, but needed spectroscopic follow-up. A promising target was the relatively bright eclipsing system CoRoT 102918586, which turned out to be a double-lined spectroscopic binary and showed, as well, clear evidence of Gamma Dor type pulsations. We obtained phase resolved high-resolution spectroscopy with the Sandiford spectrograph at the McDonald 2.1m telescope and the FEROS spectrograph at the ESO 2.2m telescope. Spectroscopy yielded both the radial velocity curves and, after spectra disentangling, the component effective temperatures, metallicity and line-of-sight projected rotational velocities. The CoRoT light curve was analyzed with an iterative procedure, devised to disentangle eclipses from pulsations. We obtained an accurate determination of the system parameters, and by comparison with evolutionary models strict constraints on the system age. Finally, the residuals obtained after subtraction of the best fitting eclipsing binary model were analyzed to determine the pulsator properties. We achieved a quite complete and consistent description of the system. The primary star pulsates with typical {gamma} Dor frequencies and shows a splitting in period which is consistent with high order g-mode pulsations in a star of the corresponding physical parameters. The value of the splitting, in particular, is consistent with pulsations in l = 1 modes.
131 - Patricia Lampens 2021
Eclipsing systems are essential objects for understanding the properties of stars and stellar systems. Eclipsing systems with pulsating components are furthermore advantageous because they provide accurate constraints on the component properties, as well as a complementary method for pulsation mode determination, crucial for precise asteroseismology. The outcome of space missions aiming at delivering high-accuracy light curves for many thousands of stars in search of planetary systems has also generated new insights in the field of variable stars and revived the interest of binary systems in general. The detection of eclipsing systems with pulsating components has particularly benefitted from this, and progress in this field is growing fast. In this review, we showcase some of the recent results obtained from studies of eclipsing systems with pulsating components based on data acquired by the space missions {it Kepler} or TESS. We consider different system configurations including semi-detached eclipsing binaries in (near-)circular orbits, a (near-)circular and non-synchronized eclipsing binary with a chemically peculiar component, eclipsing binaries showing the heartbeat phenomenon, as well as detached, eccentric double-lined systems. All display one or more pulsating component(s). Among the great variety of known classes of pulsating stars, we discuss unevolved or slightly evolved pulsators of spectral type B, A or F and red giants with solar-like oscillations. Some systems exhibit additional phenomena such as tidal effects, angular momentum transfer, (occasional) mass transfer between the components and/or magnetic activity. How these phenomena and the orbital changes affect the different types of pulsations excited in one or more components, offers a new window of opportunity to better understand the physics of pulsations.
Context: We present the results of an extensive ground-based photometric and spectroscopic campaign on the gamma Dor CoRoT target HD49434. This campaign was preparatory to the CoRoT satellite observations, which took place from October 2007 to March 2008. Results: The frequency analysis clearly shows the presence of four frequencies in the 0.2-1.7 c/d interval, as well as six frequencies in the 5-12 c/d domain. The low frequencies are typical for gamma Dor variables while the high frequencies are common for delta Sct pulsators. We propose the frequency 2.666 c/d as a possible rotational frequency. All modes, for which an identification was possible, seem to be high-degree modes (3 <= l <= 8). We did not find evidence for a possible binary nature of HD49434. The element abundances we derived are consistent with the values obtained in previous analyses. Conclusions: We classify the gamma Dor star HD49434 as a hybrid pulsator, which pulsates simultaneously in p- and g-modes. This finding makes HD49434 an extremely interesting target for asteroseismic modelling. Observations: Based on observations made with the 2.2m ESO/MPI telescope at the La Silla Observatory under the ESO Large Programme: LP178.D-0361. Also based on observations obtained at Observatorio de Sierra Nevada (Spain), at the Centro Astronomico Hispano Aleman at Calar Alto (Spain), at Observatorio Astronomico Nacional San Pedro Martir (Mexico), at the Piszkesteto Mountain Station of Konkoly Observatory (Hungary), at Observatoire de Haute Provence (France) and at Mount John University Observatory (New Zealand).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا