ترغب بنشر مسار تعليمي؟ اضغط هنا

Accounting for Model Uncertainty in Algorithmic Discrimination

109   0   0.0 ( 0 )
 نشر من قبل Junaid Ali
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional approaches to ensure group fairness in algorithmic decision making aim to equalize ``total error rates for different subgroups in the population. In contrast, we argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty (a.k.a epistemic uncertainty), caused due to lack of knowledge about the best model or due to lack of data. In other words, our proposal calls for ignoring the errors that occur due to uncertainty inherent in the data, i.e., aleatoric uncertainty. We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty. We propose scalable convex proxies to come up with classifiers that exhibit predictive multiplicity and empirically show that our methods are comparable in performance and up to four orders of magnitude faster than the current state-of-the-art. We further propose methods to achieve our goal of equalizing group error rates arising due to model uncertainty in algorithmic decision making and demonstrate the effectiveness of these methods using synthetic and real-world datasets.

قيم البحث

اقرأ أيضاً

Machine learning algorithms are increasingly used to inform critical decisions. There is a growing concern about bias, that algorithms may produce uneven outcomes for individuals in different demographic groups. In this work, we measure bias as the d ifference between mean prediction errors across groups. We show that even with unbiased input data, when a model is mis-specified: (1) population-level mean prediction error can still be negligible, but group-level mean prediction errors can be large; (2) such errors are not equal across groups; and (3) the difference between errors, i.e., bias, can take the worst-case realization. That is, when there are two groups of the same size, mean prediction errors for these two groups have the same magnitude but opposite signs. In closed form, we show such errors and bias are functions of the first and second moments of the joint distribution of features (for linear and probit regressions). We also conduct numerical experiments to show similar results in more general settings. Our work provides a first step for decoupling the impact of different causes of bias.
The most popular face recognition benchmarks assume a distribution of subjects without much attention to their demographic attributes. In this work, we perform a comprehensive discrimination-aware experimentation of deep learning-based face recogniti on. The main aim of this study is focused on a better understanding of the feature space generated by deep models, and the performance achieved over different demographic groups. We also propose a general formulation of algorithmic discrimination with application to face biometrics. The experiments are conducted over the new DiveFace database composed of 24K identities from six different demographic groups. Two popular face recognition models are considered in the experimental framework: ResNet-50 and VGG-Face. We experimentally show that demographic groups highly represented in popular face databases have led to popular pre-trained deep face models presenting strong algorithmic discrimination. That discrimination can be observed both qualitatively at the feature space of the deep models and quantitatively in large performance differences when applying those models in different demographic groups, e.g. for face biometrics.
As relational datasets modeled as graphs keep increasing in size and their data-acquisition is permeated by uncertainty, graph-based analysis techniques can become computationally and conceptually challenging. In particular, node centrality measures rely on the assumption that the graph is perfectly known -- a premise not necessarily fulfilled for large, uncertain networks. Accordingly, centrality measures may fail to faithfully extract the importance of nodes in the presence of uncertainty. To mitigate these problems, we suggest a statistical approach based on graphon theory: we introduce formal definitions of centrality measures for graphons and establish their connections to classical graph centrality measures. A key advantage of this approach is that centrality measures defined at the modeling level of graphons are inherently robust to stochastic variations of specific graph realizations. Using the theory of linear integral operators, we define degree, eigenvector, Katz and PageRank centrality functions for graphons and establish concentration inequalities demonstrating that graphon centrality functions arise naturally as limits of their counterparts defined on sequences of graphs of increasing size. The same concentration inequalities also provide high-probability bounds between the graphon centrality functions and the centrality measures on any sampled graph, thereby establishing a measure of uncertainty of the measured centrality score. The same concentration inequalities also provide high-probability bounds between the graphon centrality functions and the centrality measures on any sampled graph, thereby establishing a measure of uncertainty of the measured centrality score.
Methods to find counterfactual explanations have predominantly focused on one step decision making processes. In this work, we initiate the development of methods to find counterfactual explanations for decision making processes in which multiple, de pendent actions are taken sequentially over time. We start by formally characterizing a sequence of actions and states using finite horizon Markov decision processes and the Gumbel-Max structural causal model. Building upon this characterization, we formally state the problem of finding counterfactual explanations for sequential decision making processes. In our problem formulation, the counterfactual explanation specifies an alternative sequence of actions differing in at most k actions from the observed sequence that could have led the observed process realization to a better outcome. Then, we introduce a polynomial time algorithm based on dynamic programming to build a counterfactual policy that is guaranteed to always provide the optimal counterfactual explanation on every possible realization of the counterfactual environment dynamics. We validate our algorithm using both synthetic and real data from cognitive behavioral therapy and show that the counterfactual explanations our algorithm finds can provide valuable insights to enhance sequential decision making under uncertainty.
Many technical approaches have been proposed for ensuring that decisions made by machine learning systems are fair, but few of these proposals have been stress-tested in real-world systems. This paper presents an example of one teams approach to the challenge of applying algorithmic fairness approaches to complex production systems within the context of a large technology company. We discuss how we disentangle normative questions of product and policy design (like, how should the system trade off between different stakeholders interests and needs?) from empirical questions of system implementation (like, is the system achieving the desired tradeoff in practice?). We also present an approach for answering questions of the latter sort, which allows us to measure how machine learning systems and human labelers are making these tradeoffs across different relevant groups. We hope our experience integrating fairness tools and approaches into large-scale and complex production systems will be useful to other practitioners facing similar challenges, and illuminating to academics and researchers looking to better address the needs of practitioners.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا