ﻻ يوجد ملخص باللغة العربية
In this paper, a class of arbitrarily high-order linear momentum-preserving and energy-preserving schemes are proposed, respectively, for solving the regularized long-wave equation. For the momentum-preserving scheme, our key ideas mainly follow the extrapolation/prediction-correction technique and symplectic Runge-Kutta (RK) methods in time combined with the standard Fourier pseudo-spectral method in space. We show that it is uniquely solvable, unconditionally stable and can exactly preserve the momentum of the system. Subsequently, based on the energy quadratization approach and the analogous linearized idea used in the construction of the linear momentum-preserving scheme, the energy-preserving scheme is presented and it is proven to preserve both the discrete mass and quadratic energy. Numerical results are addressed to demonstrate the accuracy and efficiency of the schemes.
In this paper, we design a novel class of arbitrarily high-order structure-preserving numerical schemes for the time-dependent Gross-Pitaevskii equation with angular momentum rotation in three dimensions. Based on the idea of the scalar auxiliary var
A novel class of high-order linearly implicit energy-preserving exponential integrators are proposed for the nonlinear Schrodinger equation. We firstly done that the original equation is reformulated into a new form with a modified quadratic energy b
We present a paradigm for developing arbitrarily high order, linear, unconditionally energy stable numerical algorithms for gradient flow models. We apply the energy quadratization (EQ) technique to reformulate the general gradient flow model into an
We study a family of structure-preserving deterministic numerical schemes for Lindblad equations, and carry out detailed error analysis and absolute stability analysis. Both error and absolute stability analysis are validated by numerical examples.
This paper proposes a new class of arbitarily high-order conservative numerical schemes for the generalized Korteweg-de Vries (KdV) equation. This approach is based on the scalar auxiliary variable (SAV) method. The equation is reformulated into an e