ﻻ يوجد ملخص باللغة العربية
A novel class of high-order linearly implicit energy-preserving exponential integrators are proposed for the nonlinear Schrodinger equation. We firstly done that the original equation is reformulated into a new form with a modified quadratic energy by the scalar auxiliary variable approach. The spatial derivatives of the system are then approximated with the standard Fourier pseudo-spectral method. Subsequently, we apply the extrapolation technique to the nonlinear term of the semi-discretized system and a linearized system is obtained. Based on the Lawson transformation, the linearized system is rewritten as an equivalent one and we further apply the symplectic Runge-Kutta method to the resulting system to gain a fully discrete scheme. We show that the proposed scheme can produce numerical solutions along which the modified energy is precisely conserved, as is the case with the analytical solution and is extremely efficient in the sense that only linear equations with constant coefficients need to be solved at every time step. Numerical results are addressed to demonstrate the remarkable superiority of the proposed schemes in comparison with other high-order structure-preserving method.
In this paper, a family of arbitrarily high-order structure-preserving exponential Runge-Kutta methods are developed for the nonlinear Schrodinger equation by combining the scalar auxiliary variable approach with the exponential Runge-Kutta method. B
This article presents and analyses an exponential integrator for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. We first prove that the strong order of the numerical approx
In this paper, we present a linearly implicit energy-preserving scheme for the Camassa-Holm equation by using the multiple scalar auxiliary variables approach, which is first developed to construct efficient and robust energy stable schemes for gradi
In this paper, a class of arbitrarily high-order linear momentum-preserving and energy-preserving schemes are proposed, respectively, for solving the regularized long-wave equation. For the momentum-preserving scheme, our key ideas mainly follow the
In this paper, we analyse a new exponential-type integrator for the nonlinear cubic Schrodinger equation on the $d$ dimensional torus $mathbb T^d$. The scheme has recently also been derived in a wider context of decorated trees in [Y. Bruned and K. S