ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent and dephasing spectroscopy for single-impurity probing of an ultracold bath

101   0   0.0 ( 0 )
 نشر من قبل Daniel Adam
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Adam




اسأل ChatGPT حول البحث

We report Ramsey spectroscopy on the clock states of individual Cs impurities immersed in an ultracold Rb bath. We record both the interaction-driven phase evolution and the decay of fringe contrast of the Ramsey interference signal to obtain information about bath density or temperature nondestructively. The Ramsey fringe is modified by a differential shift of the collisional energy when the two Cs states superposed interact with the Rb bath. This differential shift is directly affected by the mean gas density and the details of the Rb-Cs interspecies scattering length, affecting the phase evolution and the contrast of the Ramsey signal. Additionally, we enhance the temperature dependence of the phase shift preparing the system close to a low-magnetic-field Feshbach resonance where the $s$-wave scattering length is significantly affected by the collisional (kinetic) energy. Analyzing coherent phase evolution and decay of the Ramsey fringe contrast, we probe the Rb clouds density and temperature. Our results point at using individual impurity atoms as nondestructive quantum probes in complex quantum systems.



قيم البحث

اقرأ أيضاً

We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism.
We present a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizati ons, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Phys. Rev. Lett. 118, 065302 (2017)] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices, which trap atoms depending on their internal spin state. We here use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.
Chemical reaction rates often depend strongly on stereodynamics, namely the orientation and movement of molecules in three-dimensional space. An ultracold molecular gas, with a temperature below 1 uK, provides a highly unusual regime for chemistry, w here polar molecules can easily be oriented using an external electric field and where, moreover, the motion of two colliding molecules is strictly quantized. Recently, atom-exchange reactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these exothermic and barrierless bimolecular reactions, KRb+KRb -> K2+Rb2, occur at a rate that rises steeply with increasing dipole moment. Here we show that the quantum stereodynamics of the ultracold collisions can be exploited to suppress the bimolecular chemical reaction rate by nearly two orders of magnitude. We use an optical lattice trap to confine the fermionic polar molecules in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each other only in a side-by-side collision, where the chemical reaction rate is suppressed by the repulsive dipole-dipole interaction. We show that the suppression of the bimolecular reaction rate requires quantum-state control of both the internal and external degrees of freedom of the molecules. The suppression of chemical reactions for polar molecules in a quasi-two-dimensional trap opens the way for investigation of a dipolar molecular quantum gas. Because of the strong, long-range character of the dipole-dipole interactions, such a gas brings fundamentally new abilities to quantum-gas-based studies of strongly correlated many-body physics, where quantum phase transitions and new states of matter can emerge.
We introduce a model to study the collisions of two ultracold diatomic molecules in one dimension interacting via pairwise potentials. We present results for this system, and argue that it offers lessons for real molecular collisions in three dimensi ons. We analyze the distribution of the adiabatic potentials in the hyperspherical coordinate representation as well as the distribution of the four-body bound states in the adiabatic approximation (i.e. no coupling between adiabatic channels). It is found that while the adiabatic potential distribution transitions from chaotic to non-chaotic as the two molecules are separated, the four-body bound states show no visible chaos in the distribution of nearest-neighbor energy level spacing. We also study the effects of molecular properties, such as interaction strength, interaction range, and atomic mass, on the resonance density and degree of chaos in the adiabatic potentials. We numerically find that the dependence of the four-body bound state density on these parameters is captured by simple scaling laws, in agreement with previous analytic arguments, even though these arguments relied on uncontrolled approximations. This agreement suggests that similar scaling laws may also govern real molecular collisions in three dimensions.
There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelen gth free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work opens a new frontier for the subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا