ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast, high-precision optical polarization synthesizer for ultracold-atom experiments

101   0   0.0 ( 0 )
 نشر من قبل Andrea Alberti
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Phys. Rev. Lett. 118, 065302 (2017)] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices, which trap atoms depending on their internal spin state. We here use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.


قيم البحث

اقرأ أيضاً

The generation and manipulation of ultracold atomic ensembles in the quantum regime require the application of dynamically controllable microwave fields with ultra-low noise performance. Here, we present a low-phase-noise microwave source with two in dependently controllable output paths. Both paths generate frequencies in the range of $6.835,$GHz $pm$ $25,$MHz for hyperfine transitions in $^{87}$Rb. The presented microwave source combines two commercially available frequency synthesizers: an ultra-low-noise oscillator at $7,$GHz and a direct digital synthesizer for radiofrequencies. We demonstrate a low integrated phase noise of $580,mu$rad in the range of $10,$Hz to $100,$kHz and fast updates of frequency, amplitude and phase in sub-$mu$s time scales. The highly dynamic control enables the generation of shaped pulse forms and the deployment of composite pulses to suppress the influence of various noise sources.
113 - F. Anders , A. Idel , P. Feldmann 2020
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers open up unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.
101 - S. Rosi , A. Bernard , N. Fabbri 2013
We present experimental evidence of the successful closed-loop optimization of the dynamics of cold atoms in an optical lattice. We optimize the loading of an ultracold atomic gas minimizing the excitations in an array of one-dimensional tubes (3D-1D crossover) and we perform an optimal crossing of the quantum phase-transition from a Superfluid to a Mott-Insulator in a three-dimensional lattice. In both cases we enhance the experiment performances with respect to those obtained via adiabatic dynamics, effectively speeding up the process by more than a factor three while improving the quality of the desired transformation.
Supersymmetric systems derive their properties from conserved supercharges which form a supersymmetric algebra. These systems naturally factorize into two subsystems, which, when considered as individual systems, have essentially the same eigenenergi es, and their eigenstates can be mapped onto each other. We first propose a one-dimensional ultracold atom setup to realize such a pair of supersymmetric systems. We propose a Mach-Zehnder interference experiment which we demonstrate for this system, and which can be realized with current technology. In this interferometer, a single atom wave packet that evolves in a superposition of the subsystems, gives an interference contrast that is sharply peaked if the subsystems form a supersymmetric pair. Secondly, we propose a two-dimensional setup that implements supersymmetric dynamics in a synthetic gauge field.
We report on the design, construction, and performance of a compact magnetic shield that facilitates a controlled, low-noise environment for experiments with ultracold atomic gases. The shield was designed to passively attenuate external slowly-varyi ng magnetic fields while allowing for ample optical access. The geometry, number of layers and choice of materials were optimised using extensive finite-element numerical simulations. The measured performance of the shield is in good agreement with the simulations. From measurements of the spin coherence of an ultracold atomic ensemble we demonstrate a remnant field noise of 2.6 microGauss and a suppression of external dc magnetic fields by more than five orders of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا