ﻻ يوجد ملخص باللغة العربية
There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work opens a new frontier for the subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)
We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scal
Long-range interactions between cold Rydberg atoms, which are used in many important applications, can be enhanced using Forster resonances between collective many-body states controlled by an external electric field. Here we report on the first expe
We propose to use fermionic atoms with degenerate ground and excited internal levels ($F_grightarrow F_e$), loaded into the motional ground state of an optical lattice with two atoms per lattice site, to realize dark states with no radiative decay. T
Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent f