ﻻ يوجد ملخص باللغة العربية
Time series forecasting methods play critical role in estimating the spread of an epidemic. The coronavirus outbreak of December 2019 has already infected millions all over the world and continues to spread on. Just when the curve of the outbreak had started to flatten, many countries have again started to witness a rise in cases which is now being referred as the 2nd wave of the pandemic. A thorough analysis of time-series forecasting models is therefore required to equip state authorities and health officials with immediate strategies for future times. This aims of the study are three-fold: (a) To model the overall trend of the spread; (b) To generate a short-term forecast of 10 days in countries with the highest incidence of confirmed cases (USA, India and Brazil); (c) To quantitatively determine the algorithm that is best suited for precise modelling of the linear and non-linear features of the time series. The comparison of forecasting models for the total cumulative cases of each country is carried out by comparing the reported data and the predicted value, and then ranking the algorithms (Prophet, Holt-Winters, LSTM, ARIMA, and ARIMA-NARNN) based on their RMSE, MAE and MAPE values. The hybrid combination of ARIMA and NARNN (Nonlinear Auto-Regression Neural Network) gave the best result among the selected models with a reduced RMSE, which proved to be almost 35.3% better than one of the most prevalent method of time-series prediction (ARIMA). The results demonstrated the efficacy of the hybrid implementation of the ARIMA-NARNN model over other forecasting methods such as Prophet, Holt Winters, LSTM, and the ARIMA model in encapsulating the linear as well as non-linear patterns of the epidemical datasets.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARI
With the severity of the COVID-19 outbreak, we characterize the nature of the growth trajectories of counties in the United States using a novel combination of spectral clustering and the correlation matrix. As the U.S. and the rest of the world are
This paper addresses the problem of time series forecasting for non-stationary signals and multiple future steps prediction. To handle this challenging task, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective function for
This paper aims at providing the summary of the Global Data Science Project (GDSC) for COVID-19. as on May 31 2020. COVID-19 has largely impacted on our societies through both direct and indirect effects transmitted by the policy measures to counter
We introduce DeepGLEAM, a hybrid model for COVID-19 forecasting. DeepGLEAM combines a mechanistic stochastic simulation model GLEAM with deep learning. It uses deep learning to learn the correction terms from GLEAM, which leads to improved performanc