ﻻ يوجد ملخص باللغة العربية
Many Gibbs measures with mean field interactions are known to be chaotic, in the sense that any collection of $k$ particles in the $n$-particle system are asymptotically independent, as $ntoinfty$ with $k$ fixed or perhaps $k=o(n)$. This paper quantifies this notion for a class of continuous Gibbs measures on Euclidean space with pairwise interactions, with main examples being systems governed by convex interactions and uniformly convex confinement potentials. The distance between the marginal law of $k$ particles and its limiting product measure is shown to be $O((k/n)^{c wedge 2})$, with $c$ proportional to the squared temperature. In the high temperature case, this improves upon prior results based on subadditivity of entropy, which yield $O(k/n)$ at best. The bound $O((k/n)^2)$ cannot be improved, as a Gaussian example demonstrates. The results are non-asymptotic, and distance is quantified via relative Fisher information, relative entropy, or the squared quadratic Wasserstein metric. The method relies on an a priori functional inequality for the limiting measure, used to derive an estimate for the $k$-particle distance in terms of the $(k+1)$-particle distance.
We formulate a continuous version of the well known discrete hardcore (or independent set) model on a locally finite graph, parameterized by the so-called activity parameter $lambda > 0$. In this version, the state or spin value $x_u$ of any node $u$
We extend the notion of Gibbsianness for mean-field systems to the set-up of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given loc
We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infini
This paper develops a non-asymptotic, local approach to quantitative propagation of chaos for a wide class of mean field diffusive dynamics. For a system of $n$ interacting particles, the relative entropy between the marginal law of $k$ particles and
We show that nontrivial bi-infinite polymer Gibbs measures do not exist in typical environments in the inverse-gamma (or log-gamma) directed polymer model on the planar square lattice. The precise technical result is that, except for measures support