ﻻ يوجد ملخص باللغة العربية
We show that nontrivial bi-infinite polymer Gibbs measures do not exist in typical environments in the inverse-gamma (or log-gamma) directed polymer model on the planar square lattice. The precise technical result is that, except for measures supported on straight-line paths, such Gibbs measures do not exist in almost every environment when the weights are independent and identically distributed inverse-gamma random variables. The proof proceeds by showing that when two endpoints of a point-to-point polymer distribution are taken to infinity in opposite directions but not parallel to lattice directions, the midpoint of the polymer path escapes. The proof is based on couplings, planar comparison arguments, and a recently discovered joint distribution of Busemann functions.
We define a potential-weighted connective constant that measures the effective strength of a repulsive pair potential of a Gibbs point process modulated by the geometry of the underlying space. We then show that this definition leads to improved boun
We present a general method to derive continuity estimates for conditional probabilities of general (possibly continuous) spin models sub jected to local transformations. Such systems arise in the study of a stochastic time-evolution of Gibbs measure
We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infini
We consider Gibbs distributions on permutations of a locally finite infinite set $Xsubsetmathbb{R}$, where a permutation $sigma$ of $X$ is assigned (formal) energy $sum_{xin X}V(sigma(x)-x)$. This is motivated by Feynmans path representation of the q
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite