ﻻ يوجد ملخص باللغة العربية
This paper develops a non-asymptotic, local approach to quantitative propagation of chaos for a wide class of mean field diffusive dynamics. For a system of $n$ interacting particles, the relative entropy between the marginal law of $k$ particles and its limiting product measure is shown to be $O((k/n)^2)$ at each time, as long as the same is true at time zero. A simple Gaussian example shows that this rate is optimal. The main assumption is that the limiting measure obeys a certain functional inequality, which is shown to encompass many potentially irregular but not too singular finite-range interactions, as well as some infinite-range interactions. This unifies the previously disparate cases of Lipschitz versus bounded measurable interactions, improving the best prior bounds of $O(k/n)$ which were deduced from global estimates involving all $n$ particles. We also cover a class of models for which qualitative propagation of chaos and even well-posedness of the McKean-Vlasov equation were previously unknown. At the center of a new approach is a differential inequality, derived from a form of the BBGKY hierarchy, which bounds the $k$-particle entropy in terms of the $(k+1)$-particle entropy.
We address propagation of chaos for large systems of rough differential equations associated with random rough differential equations of mean field type $$ dX_t = V(X_t,mathcal{L}(X_t))dt + F(X_t,mathcal{L}(X_t))dW_t $$ where $W$ is a random rough pa
Many Gibbs measures with mean field interactions are known to be chaotic, in the sense that any collection of $k$ particles in the $n$-particle system are asymptotically independent, as $ntoinfty$ with $k$ fixed or perhaps $k=o(n)$. This paper quanti
We consider $mathbb{R}^d$-valued diffusion processes of type begin{align*} dX_t = b(X_t)dt, +, dB_t. end{align*} Assuming a geometric drift condition, we establish contractions of the transitions kernels in Kantorovich ($L^1$ Wasserstein) dista
In this paper, we investigate the limiting behavior of a continuous-time counterpart of the Stochastic Gradient Descent (SGD) algorithm applied to two-layer overparameterized neural networks, as the number or neurons (ie, the size of the hidden layer
We consider Kacs 1D N-particle system coupled to an ideal thermostat at temperature T, introduced by Bonetto, Loss, and Vaidyanathan in 2014. We obtain a propagation of chaos result for this system, with explicit and uniform-in-time rates of order N^