ترغب بنشر مسار تعليمي؟ اضغط هنا

An upper limit for the growth of inner planets?

338   0   0.0 ( 0 )
 نشر من قبل Andrew Winter
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exotic range of known planetary systems has provoked an equally exotic range of physical explanations for their diverse architectures. However, constraining formation processes requires mapping the observed exoplanet population to that which initially formed in the protoplanetary disc. Numerous results suggest that (internal or external) dynamical perturbation alters the architectures of some exoplanetary systems. Isolating planets that have evolved without any perturbation can help constrain formation processes. We consider the Kepler multiples, which have low mutual inclinations and are unlikely to have been dynamically perturbed. We apply a modelling approach similar to that of Mulders et al. (2018), additionally accounting for the two-dimensionality of the radius ($R =0.3-20,R_oplus$) and period ($P= 0.5-730$ days) distribution. We find that an upper limit in planet mass of the form $M_{rm{lim}} propto a^beta exp(-a_{rm{in}}/a)$, for semi-major axis $a$ and a broad range of $a_{rm{in}}$ and $beta$, can reproduce a distribution of $P$, $R$ that is indistinguishable from the observed distribution by our comparison metric. The index is consistent with $beta= 1.5$, expected if growth is limited by accretion within the Hill radius. This model is favoured over models assuming a separable PDF in $P$, $R$. The limit, extrapolated to longer periods, is coincident with the orbits of RV-discovered planets ($a>0.2$ au, $M>1,M_{rm{J}}$) around recently identified low density host stars, hinting at isolation mass limited growth. We discuss the necessary circumstances for a coincidental age-related bias as the origin of this result, concluding that such a bias is possible but unlikely. We conclude that, in light of the evidence that some planetary systems have been dynamically perturbed, simple models for planet growth during the formation stage are worth revisiting.

قيم البحث

اقرأ أيضاً

123 - David S. Spiegel , 2010
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an objects mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we in vestigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an objects initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the objects mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
DH Tau is a young ($sim$1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accre ting based on copious H${alpha}$ emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of $17.2pm1.7,M_{oplus}$, which gives a disk-to-star mass ratio of 0.014 (assuming the usual Gas-to-Dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42$M_{oplus}$ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model including heating of the circumplanetary disk by DH Tau b and DH Tau A suggests that a mass averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09$M_{oplus}$ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.
There are several on-going projects to search for stars orbiting around an invisible companion. A fraction of such candidates may be a triple, instead of a binary, consisting of an inner binary black hole (BBH) and an outer orbiting star. In this pap er, we propose a methodology to search for a signature of such an inner BBH, possibly a progenitor of gravitational-wave sources discovered by {it LIGO}, from the precise radial velocity (RV) follow-up of the outer star. We first describe a methodology using an existing approximate RV formula for coplanar circular triples. We apply this method and constrain the parameters of a possible inner binary objects in 2M05215658+4359220, which consists of a red giant and an unseen companion. Next we consider co-planar but non-circular triples. We compute numerically the RV variation of a tertiary star orbiting around an inner BBH, generate mock RV curves, and examine the feasibility of the BBH detection for our fiducial models. We conclude that the short-cadence RV monitoring of a star-BH binary provides an interesting and realistic method to constrain and/or search for possible inner BBHs. Indeed a recent discovery of a star--BH binary system LB-1 may imply that there are a large number of such unknown objects in our Galaxy, which are ideal targets for the methodology proposed here.
Searches for planetary transits carried out in open and globular clusters have yielded to date only a handful of weak, unconfirmed candidates. These results have been interpreted either as being insignificant, or as evidence that the cluster chemical or dynamical environment inhibits the planetary formation or survival. Most campaigns were limited by small sample statistics or systematics from ground-based photometry. In this work we performed a search for transiting planets and variables in a deep stellar field of NGC 6397 imaged by HST-ACS for 126 orbits. We analyzed 5,078 light curves, including a pure sample of 2,215 cluster-member M0-M9 dwarfs. The light curves have been corrected for systematic trends and inspected with several tools. No high-significance planetary candidate is detected. We compared this null detection with the most recent results from Kepler, showing that no conclusive evidence of lower planet incidence can be drawn. However, a very small photometric jitter is measured for early-M cluster members (<~2 mmag on 98% of them), which may be worth targeting in the near future with more optimized campaigns. Twelve variable stars are reported for the first time.
We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that sugges ts planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Furthermore, population synthesis modelling suggests that this boundary implies that gas giant planets accrete ~ 70 % of the inward flowing gas, allowing ~ 30$ % through to the inner disc. This is qualitatively consistent with observations of transition discs suggesting the presence of inner holes, despite there being ongoing gas accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا